
ATS Documentation
Release 5.5

Paul F. Dubois and Nu Ai Tang

Feb 17, 2022

CONTENTS

1 Purpose and Features 1
1.1 Download and Install . 2
1.2 History . 3
1.3 LLNL Notes . 3
1.4 About The Documentation . 3

2 The ATS Tutorial, Andyroid 5
2.1 Introduction To Andyroid . 5

2.1.1 Running Andyroid under ATS . 5
2.2 ATS Execution Phases . 7

2.2.1 Phase 1: Sourcing . 7
2.2.2 Phase 2: Sorting . 8
2.2.3 Phase 3: Batch . 8
2.2.4 Phase 4: Execution . 8
2.2.5 Phase 5: Report . 9
2.2.6 Phase 6: Postprocessing . 9
2.2.7 Debugging Techniques . 10
2.2.8 Debugging Scheduling . 10

2.3 Structuring Your Test Suite . 10
2.3.1 Simple First Steps . 11
2.3.2 Understanding The Test Statement . 12
2.3.3 User-Defined Options . 14
2.3.4 Understanding Defines . 15
2.3.5 Defining functions . 15
2.3.6 Leveling . 17

2.4 Advanced Topics . 18
2.4.1 Expecting Failure . 18
2.4.2 Postprocessing . 18
2.4.3 Using the Log . 18
2.4.4 Using Magic Output . 19
2.4.5 Making Custom Drivers . 19

3 Reference Material 23
3.1 Test Selection and Execution . 23

3.1.1 ATS Execution and Command-line Options . 23
3.1.2 Basic Operations . 25

3.2 Controlling Input . 27
3.2.1 File Sourcing . 27
3.2.2 Using Introspection . 28
3.2.3 Grouping . 29

i

3.2.4 Wait . 30
3.3 Executing Tests . 31

3.3.1 Scheduling . 31
3.3.2 Progress Reports . 32
3.3.3 Output Files . 32
3.3.4 Interrupting a Run . 32

3.4 Creating and Selecting Tests . 32
3.4.1 Creating Tests . 32
3.4.2 Test Options . 34
3.4.3 Filters . 36
3.4.4 Additional ATS Vocabulary . 36
3.4.5 Manipulating Test Options . 37
3.4.6 Customization . 39
3.4.7 Using Levels . 39
3.4.8 The Test Class . 39
3.4.9 Postprocessing . 42
3.4.10 Test Suite Strategies . 42

3.5 Porting and Custom Machines . 43
3.5.1 Adding Test Options Via Machine . 44
3.5.2 Customizing the Scheduler . 44

3.6 The ats Module . 45
3.7 Using A Batch Facility . 45

3.7.1 General Information . 45
3.7.2 Running Entirely In Batch . 46

3.8 More Examples . 46
3.8.1 Introspection . 46
3.8.2 Test Control . 47
3.8.3 Resources For Learning ATS . 48
3.8.4 Quick Recipes . 49

4 Notes 51
4.1 Modules . 51

4.1.1 ats . 51
4.1.2 configuration . 51
4.1.3 management . 51
4.1.4 tests . 51
4.1.5 schedulers . 51
4.1.6 machines . 52
4.1.7 log . 52
4.1.8 times . 52
4.1.9 atsut . 52
4.1.10 executables . 52

4.2 Programming Notes . 52
4.2.1 Forming Groups . 52
4.2.2 Implementing Waits . 53
4.2.3 Dependents . 53
4.2.4 The Standard Machine . 53

Index 55

ii

CHAPTER

ONE

PURPOSE AND FEATURES

The Automated Testing System (ATS) is an open-source, Python-based tool for automating the running of tests of an
application. ATS can test any program that can signal success or failure via its exit status.

ATS is distributed, introspective, and scalable.

• It is distributed in two senses. First, there is no central database of tests to run. Tests may be spread over many
directories and usually adding a test in a subdirectory is entirely a local operation.

• Introspective means that a test can be runnable by someone who is not an expert, yet runnable with different
arguments by someone who is. An application test may contain within itself, in comments, directions for how
to run itself in one or more ways. An expert may run these tests normally using his application; but when ATS
runs it, it runs the application according to the special comments within the input.

• Depending on the available resources, the execution of the tests can be done over many processors and hosts, in
parallel. Distributed execution and test specification helps ATS stay scalable.

Other features of ATS include:

• A test may depend on another test, and will not be executed unless their parent test succeeds.

• Tests may be filtered out (that is, not executed) in many ways. These may include number of processors, time
limit, platform, or other user-defined criteria.

• A level may be given to each test, and used to stratify a test suite into subsets of increasing thoroughness.

• ATS is extensible. The ats driver script does almost nothing except import the ats module and call the
ats.manager.main() method. It may suit your purposes to make a different driver that does things before or
after this invocation. The ats script uses the assets of the module ats to provide a command line interface-type
testing system. Other interfaces, such as a GUI interface, are possible.

• ATS makes it easy in particular to postprocess the results of the testing by registering routines to be executed
after the tests have completed, but before exiting.

• A facility is provided to make it easy to port ATS to new machines such as parallel processors and multi-noded
distributed machines, or to take advantage of multiple cores. The ‘stock’ ATS will run up to two tests at once,
each of them standard serial jobs (np = 1 in what follows).

While ATS input can be written using the full power of Python, the basic operations require only a few statements
written in a special vocabulary that is not be hard to learn. For example:

test(executable="/my/path/to/my/code",
clas="-input mydeck delta=3",
np=3)

executes the given executable with the given command-line arguments (clas), launching the job is parallel on 3 proces-
sors.

1

ATS Documentation, Release 5.5

Note: A note on function signatures While this document assumes you can learn the basics of Python on your own,
function signatures require careful understanding. In Python, the definition of a function parameter can have one or
two asterisks in front of a name.

• When calling such a function, in the place of a parameter with one asterisk in front of it, you can give zero or
more comma-separated values as a value, which the function will receive as a list.

• When a parameter name has two asterisks in front of it in the function definition, you can give zero or more
comma-separated keyword = value pairs when you call it, which the function will receive as a dictionary.

For example, the ATS source function has the signature:

source(*paths, **vocabulary)

which means any of the following are legitimate calls to it:

source('foo.py')
source('foo.py', 'goo.py')
source('foo.py', physics="on", music = "off")
source(physics="on", music = "off")
source()

As it happens, the last of these doesn’t do anything, but it is a legitimate call.

Note: All of the paths arguments must come before the first of the vocabulary arguments.

1.1 Download and Install

Installation of ATS is easy. Unpack the distribution and in the top-level directory execute:

python setup.py install

Public releases are at http://code.google.com/p/ats

The README.txt file contains installation instructions. ATS has been tested with Python 2.6 or later, available at
http://python.org.

ATS should translate to Python 3 by using the 2to3 utility but this has not yet been tried.

ATS should work, or be made to work, on any system which can run Python via a command window. In particular it
works out of the box on any Linux or Mac system. ATS works on Windows but experience there is limited.

2 Chapter 1. Purpose and Features

http://code.google.com/p/ats
http://python.org

ATS Documentation, Release 5.5

1.2 History

ATS was written by Paul F. Dubois at Lawrence Livermore National Laboratory, (LLNL) in about 2003. Although
an open-source release was made, the software was highly oriented to the LLNL computer systems and one particular
simulation, ATS has been in continuous use since then.

A revision in 2010-11 has compartmentalized the LLNL-specific system details, and we have added new features to
make the software more generally applicable and more easily portable.

The support team at LLNL includes Nu Ai Tang, T. J. Alumbaugh, and Ines Heinz. You can contact the author at
dubois1@llnl.gov. For help with the LLNL features contact tang10@llnl.gov.

ATS was written to test scientific simulations, although it can be used for any program that can be run with a command-
line, does not require interaction, and which can signal its own success or failure via its exit status (or be executed via
a shell program with those properties).

In general scientific programs do not produce predictable printed output, and so comparison of output files, so common
in the testing literature, is not normally useful.They also are generally long-running and resource-consuming; hence
ATS emphasises filtering, parallel execution, and prioritization under user control. Provision for supporting batch
execution is also provided.

1.3 LLNL Notes

The LC distribution includes an LC directory containing definitions for the local machines and the batch system. To
make use of the features of LC machines you will need to set either SYS_TYPE or MACHINE_TYPE. To install the
LC machines, run:

python setup.py install

in the LC directory after you have done so in the main ATS directory.

For help join the mailing list ats@lists.llnl.gov.

1.4 About The Documentation

This document is licensed under the terms of the LICENSE.txt file in the ATS distribution.

This documentation is written in reStructuredText, the standard language used by the Python documentation project.
You should find the source, available in the distribution, readable even without rendering. It can be if desired rendered
into plain text files, web pages, PDF files, and other formats using the tools of the Sphinx project. The source files are
located in the source subdirectory of the docs directory. The Makefile in the docs directory will render the documents
into the build subdirectory if appropriate parts of Sphinx have been installed.

If you install setuptools into your Python, you can get Sphinx with:

easy_install -U Sphinx

1.2. History 3

mailto:dubois1@llnl.gov
mailto:tang10@llnl.gov
mailto:ats@lists.llnl.gov

ATS Documentation, Release 5.5

4 Chapter 1. Purpose and Features

CHAPTER

TWO

THE ATS TUTORIAL, ANDYROID

2.1 Introduction To Andyroid

We have seen a brief overview of ATS and its rationale. This part of the document discusses an extended example and
some hints about how to use ATS. It is followed by a reference section. Few adventurers survive the reference section;
take an easy trip with this tutorial before venturing into that jungle.

The sources you need to follow along interactively are in the Examples/Andyroid subdirectory of the ATS distribu-
tion. However, you can also just read along.

The premise of this tutorial is that we have a program called andyroid; it has a post-processor named andyroidPoster
that runs using the output file of andyroid as input.

These two executables are located in subdirectory andyroid. To avoid having to compile anything for this example,
these are in fact scripts, so that to execute andyroid is really accomplished by executing:

python andyroid/andyroid.py

but you can just imagine that andyroid is a compiled program that has been installed in that subdirectory. You can see
the options andyroid has by executing python andyroid/andyroid.py --help.

-h, --help show this help message and exit

-i FILE, --input=FILE input file name

-o FILE, --output=FILE output file name

--delta Add delta?

--alpha=ALPHA A vital parameter

From here on out we will assume andyroid is an alias for python andyroid/andyroid.py so that we don’t add to
the confusion with the extra text that would not be present for a real program. Just pretend andyroid is a compiled
program.

2.1.1 Running Andyroid under ATS

Let’s suppose that we normally test our program andyroid by using this command:

andyroid -i test1.in -o test1.out

How do we get ATS to execute this test for us? The simplest way is to make a file simpleTestSuite.ats that contains:

5

ATS Documentation, Release 5.5

import os
this is the system-independent way to say "python andyroid/andyroid.py"
andyroid =sys.executable + ' ' + os.path.join("andyroid", "andyroid.py")

test(executable = andyroid,
clas = '-i test1.in -o test1.out', label= 'test1')

(clas stands for “Command Line ArgumentS”). Then execute:

ats simpleTestSuite

Note: this is not the recommended strategy, but there is a lot to learn by starting simply. ATS has lots of command-line
options as detailed in the reference part of this document, but we don’t need any yet.

Go ahead and try it. You’ll notice some interesting things here.

• The input file simpleTestSuite was found even though we didn’t put on the .ats extension. ATS tries the name,
then the name with .ats added, and finally the name with .py added.

• We constructed the name of the executable using sys.executable so that it would use the same Python that ats is
being run with. In general, ATS tests the executable to be sure it exists and does not rely on your path to find it,
so you must be precise. This is to avoid having all your tests pass when in fact you didn’t execute the program
you intended to test.

• label is a name for this test. A test has both a unique serial number, and a unique label. (If the label isn’t unique
ATS will make it unique after all the tests have been collected from your input file(s).)

• The output from the program we test (and separately, its standard error), and the output from ats itself, are put in
a single directory. This directory has a name that contains the kind of computer we’re running on, and the time.
The directory has the extension .logs.

The output files for a given test contain the test’s serial number, a simplified form of the label, and the time. That
doesn’t mean all the output from the test goes there; if the test creates files it creates them in the directory where
ATS is running them, which is by default the directory of the “sourced” file that specified the test. That doesn’t
have to be so, as explained in the reference section entry for the test function.

So, when you ran simpleTestSuite, andyroid created a something.logs directory, containing ats.log.
Unless the test failed, the standard output and standard error (which were in that same directory) have been
deleted.

To make ATS keep the output we can add an option to the test command, keep = True. Or, we can run ATS
with a --keep option, which will keep the output of any test that doesn’t have keep = False as an option.

You’ll also notice the log has full information on which tests passed or failed, and has various summaries and the list of
what tests were started in what order. Additional information on scheduling is available in atss.log, especially when
using the --verbose or --debug options.

Also in the log directory after ATS has finished execution is a file named “atsr.py”, where the “r” stands for “results”.
This file can be used in postprocessing; see Results Facility for details.

6 Chapter 2. The ATS Tutorial, Andyroid

ATS Documentation, Release 5.5

2.2 ATS Execution Phases

ATS works in six phases.

1. Read the files on the command line.

2. Examine the collection of tests, make sure every test has a distinct label, and identify batch, interactive, and
ineligible jobs (for example, one that needs more processors than are available).

3. Dispatch any batch jobs that have been specified to the batch system. If there is no batch system, such jobs are
usually skipped, but this can be overridden by the ‘–allInteractive’ option.

4. Run the tests.

5. Report the results

6. Run any postprocessors the user has defined.

Here are the details.

2.2.1 Phase 1: Sourcing

The first phase is to read the files you specify on the command line in the order you gave them. This is called sourcing
them, because it is equivalent to using ATS’s source command.

A file being sourced is written in Python using some already built-in features, as we discuss later. In
simpleTestSuite, we are able to refer to a function called test, which is already defined for us.

A test is created for each test or testif statement that is executed. However, the ATS statements such as test can
be mixed with arbitrary Python statements.

The test or testif statements return a value, a test object. This object contains all the information about the test; its
attributes are documented in the reference manual.

Warning: A test is not executed when the test function is executed.

The input language creates the illusion that the test function is causing the test itself to be executed. And it is . . .
eventually, but not now. The test statement creates a test object and puts it in a big list of test objects, but it doesn’t
execute any tests until it is entirely done sourcing files.

Consequently, you may not test the truth value of a test object:

if test(...): # ERROR CANNOT DO THIS
test(...)

t = test(...)
if t: ... # NOR THIS

This coding is disallowed because it looks like it is making one test depend upon another, but it isn’t. The tests are
not executed at this stage but rather later.

To make one test depend on another’s success, we do this:

t = test(...)
testif(t, ...)

2.2. ATS Execution Phases 7

ATS Documentation, Release 5.5

As the tests are collected, the filters that have been defined so far are used to see if the test should be attempted or not.
Besides any user-defined filters there are built-in filters on the number of processors, np, and the level. The level is
simply an easier-to-use filter that lets us execute just a portion of a test suite.

Two more functions, group and endgroup, can be used to group together a set of tests that are to be considered as a
unit for reporting success or failure, and optionally for protecting one or more directories from interference from other
tests.

The wait function can be used to divide source files into portions, so that the tests defined in that source file, after a
wait() call, execute only when the tests declared above it are completed.

All these features are described in more detail in the reference material chapter Controlling Input.

In the log, the end of the input phase is marked with a message that says, “Input complete.”

2.2.2 Phase 2: Sorting

The tests are examined to determine these things:

• Is the test to be executed interactively or in a batch system?

• Does the test depend on another (via a testif statement) so that its execution must follow that of its parent (and
be cancelled if the parent fails?).

• Is the test a member of a group, or subject to a wait statement?

• Are there sufficient CPU resources to run the test?

From all this information, the list of tests that each test must wait for is calculated, and a priority is assigned.

2.2.3 Phase 3: Batch

Any tests that are scheduled for batch are sent off to be handled by the batch system. The details of how that is done
and how you find out what happened depends on the particular batch system.

2.2.4 Phase 4: Execution

ATS must decide which tests to start given the available resources. To that end, each test has a priority. We can assign
that priority (an integer) in the test statement itself, but if we do not, a priority is calculated that reflects the value of np
(the number of processors the test requires) in the test and the priorities of any tests that must wait for this one to finish.

As a result, parent tests tend to be executed earlier so that they do not become a bottleneck. But, depending on the
available resources, lower-priority jobs may be used to keep the machine “full”.

You can see from the logs (especially atss.log``) which tests were started. If you see that a test ends up executing for a
long time after all the others are finished, you can give it a higher priority. If you aren’t getting the behavior you expect,
see the reference chapters for further details, especially directory blocking.

After test execution is completed, a file named continue.ats is written into the logs directory if any of the tests failed.
After fixing the problem, you can use continue.ats as an additional input file to another ats run. This allows you to
fix as many problems as possible before attempting a full test suite again.

8 Chapter 2. The ATS Tutorial, Andyroid

ATS Documentation, Release 5.5

2.2.5 Phase 5: Report

Reports are made about the tests, followed by summaries. Some tests can be made to report on the terminal only if they
fail, using the record or group options. These reports are made to the log. Information about tests that finished can
be seen immediately by using the --verbose command-line option.

2.2.6 Phase 6: Postprocessing

Any functions registered by the user for post-processing are executed.

onExit(f)
onExit(f) can be called with a the name of a function that takes one argument, the ATS manager object. At the
end of the ATS run this function will be called. The function f can do whatever it likes.

Multiple functions can be registered and they will be called in the order in which they were registered. Possible appli-
cations are printing reports, making graphs, etc.

Note: The master testlist is manager.testlist.

A file atsr.py is written into the log directory and can be used for postprocessing after ATS has finished. Using this
facility, you can compare runs or analyze previous runs. See Results Facility in the reference section.

Postprocessing Example

Here we add coding to our ATS input file to print out information for those tests that were filtered out:

def showFiltered (manager):
filtered = [t in manager.testlist if t.status is FILTERED]
log("Detailed list of filtered tests.")
log.indent()
for t in filtered:

log(t.serialNumber, t.name, t.note)
log.dedent()

onExit(showFiltered)

It would also work to put the showFiltered function in a file showf.py, run:

python -i <logdirectory>/atsr.py showf.py

>>> showFiltered(state)

The file atsr.py defines a variable state that contains information equivalent to the manager object. Using the -i
flag to Python, you can interactively examine the results of the ATS run.

2.2. ATS Execution Phases 9

ATS Documentation, Release 5.5

2.2.7 Debugging Techniques

level = debug(ivalue = None)
ivalue is an integer, or omitted.

With no arguments, debug returns the current debug level; with an argument it sets the level.:

if debug():
test(....)

old = debug() #save current value
debug(1)
... # debug is true in this section
debug(old) # restore previous value

So you can have various levels of debugging in your own coding:

myDebugLevel = 2
dsave = debug() # save the current value
debug(myDebugLevel)
if debug():

.... do some stuff...
if debug() >= 2:

... do some more stuff...
debug(dsave) # restore original value

Note: The --debug command-line option is equivalent to a debug(1) call at the start of your input.

Just remember you can’t do an if on a test object, and it is rather pointless to do something right after a test statement
because the test won’t run until the input is all finished.

logDefinition(name1, ... , echo=True, logging=True)

can be used to log the named vocabulary words , or with no words, all the names.

2.2.8 Debugging Scheduling

If you run in debug or verbose mode, you will get a lot of information about what affected the job schedule by examining
the atss.log file. Entries appear showing whether a job that could have executed has been blocked because it is waiting
for directory blocking (B), waits or dependencies (W), or for adequate numbers of processors (C for “CPUs”).

2.3 Structuring Your Test Suite

It is rare that a test suite of any size becomes an all-or-nothing affair. The more tests there are, the more the need to run
selected sets for selected purposes. However, having the same test specifications repeated in a variety of input files for
ATS is an invitation to maintenance headaches.

10 Chapter 2. The ATS Tutorial, Andyroid

ATS Documentation, Release 5.5

2.3.1 Simple First Steps

We could do the entire test suite by making simpleTestSuite larger, listing one test after another in a single file. As
we will see later, various filters and level indicators can be used to make it possible to execute selected subsets of the
test list.

For example (inline.ats):

import os, sys
codeDir = os.path.abspath(os.path.join(os.getcwd(), 'andyroid'))
andyroid = '%s %s/andyroid.py' % (sys.executable, codeDir)
andyroidPoster = '%s %s/andyroidPoster.py' % (sys.executable, codeDir)
stick(clas="-i %(inputFile)s -o %(outputFile)s %(opts)s")
stick(opts='')

glue(level=10)
test(executable=andyroid, inputFile='test1.in', outputFile="test1.out",

label="test1")

glue(level=20)
t = test(executable=andyroid, inputFile='test1.in', outputFile="test1d.out",

opts="--delta", label="test1d")
testif(t, clas = 'test1d.out', executable=andyroidPoster, label='test1dpost',

keep=1)

However, in our experience a centralized test file is not a good idea except on a small project. If you have several
developers who work in a distributed source tree, it is better to have the tests near where the developers work, so that
they can add new tests and don’t have to fight over a single file containing a master test list. Instead the master file,
or a few files for different purposes, should contain mostly source statements to source the master files of various
subdirectories; e.g.:

source('subdirectory1/area1.ats')
source('subdirectory2/area2.ats')
source('subdirectory3/area3.ats')

and so on down the tree until you get to files that actually specify tests in different areas.

However, when you start to do this, you do lose one thing. Remember our line that specified what “andyroid” meant?
That would have to be repeated all the way down unless we do something about it. That’s not so bad until the day you
want to run some alternate version of andyroid. The solution is to define the symbol “andyroid” so that it will be known
in any subsequent “sourced” files:

andyroid = '/my/path/to/andyroid'
define(andyroid=andyroid)
source('subdirectory1/area1.ats')
...

We will see this in action later.

2.3. Structuring Your Test Suite 11

ATS Documentation, Release 5.5

2.3.2 Understanding The Test Statement

In Python, functions often take arguments of the form name = value. These are called keyword-value pairs.

The test function takes these arguments:

• Zero, one or two positional arguments, followed by

• An arbitrary number of keyword-value pairs. These keyword-value pairs are collectively called the “options”.

The possible forms are:

test(script, clas, option1 = value1, ...)
test(script, option1 = value1, ...)
test(option1 = value1, ...)

The testif function is the same with an additional (required) first argument, the value returned by a previous test or
testif function.

Understanding Test Options

Some options have default values. Here is a list of the arguments and options in approximate level of importance or
likelyhood of use:

* script can be given by an option rather than as a positional
argument, or omitted.

* clas can likewise be given as an option and in fact must be if
script is omitted, or omitted.

* executable = 'path/to/executable' is the program to be tested.
If not given, the executable is the one specified with the ``-e``
(or ``--executable``) command-line option, which defaults to Python
itself.

Your executable may include options, such as '/path/to/executable -f',
or may be given as a list of components, such as
['/path/to/executable', '-f']. If the path contains a space, you
must use the list form to avoid ambiguity.

* np = 0 is the number of processors required. Zero means 1 processor
but may differ in consequence from np = 1 on some machines.

* label should always be specified to help you understand which test
is referred to in ATS's output. It defaults to the script name.

* name is calculated from the name of the executable, but you can
set it explicitly. The full name of the test is "name (label)".

* batch = False; if set to True, the job is executed in batch if possible
and otherwise not at all unless ``--allInteractive`` is used.

* level = 1 is the level of the test, which is subject to the built-in
level filter controlled by the ``--level`` command-line option.

(continues on next page)

12 Chapter 2. The ATS Tutorial, Andyroid

ATS Documentation, Release 5.5

(continued from previous page)

* priority is calculated for you if not given.

* independent = False; if set to True, the test can be executed when
CPU resources are available. If False, the test will not be able to execute
until no other test is running in that directory. See also the
:ref:`group facility <group_statement>`.

* timelimit has a default value of 30m, or as set on the command line
with ``--timelimit``. The test will be killed and given a timed-out
status if it is not finished running after this much time.

* keep = 0; if set to 1 (or set to 1 by the ``--keep`` option), the output
files are kept even for tests that passed. If set to 2, the standard
error file is also kept.

* check = False; if True, a test that passes is listed as one whose
output needs to be checked by hand.

* record = True; record can be set to False to omit summary reports of
this test unless it fails. You might do this with tests that are
simply post-processing followups to a test upon which they depend.

* hideOutput = False; if set to true, any captured output is not
printed in the log. (See the discussion Using Magic Output).

* directory defaults to the directory in which script resides; or if
script is not given, to the directory in which the file being
sourced statement resides. ATS will execute ``executable`` in this
directory.

* magic = "ATS:"; if an output line starts with this symbol, the
rest of the line is stored in test.output. The newline at the
end is stripped off.

* SYSTEMS if given is a list of machine names on which this test is to
be executed. Otherwise the test will be executed if otherwise eligible.

Resolving Option Values

For each option keyword there is a final value determined as follows:

• Start with the default value, if any.

• Apply values that have been set using the glue function.

• Apply values that have been set using the tack function

• Apply values that have been set using the stick function.

• Apply values that have been set using the group function.

• Apply values in the test’s options.

This final value is used. The dictionary of final values is used for interpolation into script and clas, and for filtering.

2.3. Structuring Your Test Suite 13

ATS Documentation, Release 5.5

Here are the scopes of the various ways of setting values:

• Values set in a test statement apply only to that test.

• Values set with stick apply only to test statements that follow it within the same file. A file sourced by this one
does not see the stuck value.

• Values set with tack apply until to all subsequent test statements until the file being currently sourced is com-
pleted. If this file sources another, the tacked value applies in it too.

• Values set with glue apply to all subsequent test statements until overwritten.

• Values set with group apply to all tests defined within the group. This scope also ends at the end of a source file.

• Values set on the command line apply for the entire run.

2.3.3 User-Defined Options

You can add any keyword-value pairs you want to the test statements, and set defaults for them with the glue, tack,
or stick statements. Then you can use them for filtering or for interpolation into clas and script.

Interpolation of the options into clas and script is done by using Python’s % operator. For example, if clas = “-in
%(inputFile)s”, and we have an option inputFile = ‘test1.in’, the result will be clas = “-in test1.in”.

The user can define options for the purpose of controlling which tests get executed. For example, if you do this at the
top of your input:

glue(threshold = 0.)

and in some tests you have a different value:

test(...)
test(..., threshold = 1., label = 'just me!')
stick(threshold=10.)
test(...)
test(...)

then you can execute ATS with a filter to screen out those tests where threshold is outside of some range:

ats mytest -f 'threshold >=0.5 and threshold <=2.0'

This would execute only the second test above.

Default values can also be defined locally with glue, tack, stick and group directives, and filtered with filter
directives. Including a small file with such values and filters might be an effective way to define a suite:

ats mydefinitions mytest

where mydefinitions contains glue, tack, and filter specifications.

Pop quiz: in the preceding sentence, why isn’t stick mentioned?

14 Chapter 2. The ATS Tutorial, Andyroid

ATS Documentation, Release 5.5

2.3.4 Understanding Defines

When a file is sourced, the language in which it is parsed consists of any Python statement or built-in function, plus a
limited vocabulary that includes functions like test, testif, glue, tack, stick, and log. The user can manipulate
this list for subsequent sourced files using these functions:

• define(name=value) adds the name with the given value to the vocabulary.

• undefine(name) removes name from the vocabulary.

• logDefinition(name) prints the value of name in the vocabulary; with no name given, it prints the entire vocabu-
lary.

• get(name) retrieves the value associated with name.

If you source a file that adds to the vocabulary, it will not apply in the rest of the file that did the sourcing. For example:

source('mydefs.ats') # in mydefs.ats, define(foo=value) is executed.
source('file2.ats') # foo will be defined while sourcing file2.ats.
test(executable=foo) # Error! foo not defined here

To remedy this we use the get function:

foo = get('foo')
test(executable=foo) # foo defined here now.

Here’s an important fact about sourcing: a file is never sourced twice. If it has already been sourced, it is skipped. That
means that it is not expensive to do:

source('mydefs.ats')
foo = get('foo')

in any input files. It won’t matter which of them is executed first, they will all get the definition for foo that they need.

2.3.5 Defining functions

Note that you can define anything to put it in the vocabulary, including Python functions. For example, suppose we
wish to define a function that executes andyroid and its post-processor andyroidPoster and which has an interface of
our choosing. Here is an example (file andyroid/andyroid.ats):

import os, sys
here = os.getcwd()
codeDir = os.path.abspath(os.path.join(here))
defaultAndyroid = '%s %s/andyroid.py' % (sys.executable, codeDir)
defaultAndyroidPoster = '%s %s/andyroidPoster.py' % (sys.executable, codeDir)

andyroid = os.environ.get('andyroid', defaultAndyroid)
andyroidPoster = os.environ.get('andyroidPoster', defaultAndyroidPoster)

count = 0
def runAndPost(inputFile, outputFile=None, label=None,

delta = False,
alpha = None, **options):

global count
count += 1
if outputFile is None:

(continues on next page)

2.3. Structuring Your Test Suite 15

ATS Documentation, Release 5.5

(continued from previous page)

outputFile = 'andyroid%05d.out' % count
if label is None:

label = inputFile
clas = "-i %s -o %s" % (inputFile, outputFile)

if delta:
clas += " --delta"

if alpha is not None:
clas += " --alpha %f" % alpha

Test the code
t = test(clas=clas, executable=andyroid, label = label,

name="Andyroid", **options)

Test the postprocessor
report = False means omit separate report for postprocessor if it passes.

testif(t, clas=outputFile, executable=andyroidPoster, label=t.name,
report=False, name="AndyroidPoster", keep = 1)

return t

define(andyroid=runAndPost)

(We return the test t in case we later want to have access to it, such as making another test depend on it by defining a
similar runAndPostIf(t, ...) function.)

Now we can define a new file testSuite.ats:

source('andyroid/andyroid.ats')
andyroid = get('andyroid')
andyroid('test1.in', label='test1')
andyroid('test1.in', label='test1d', delta=True)

This will result in ATS running andyroid and then, if successful, andyroidPoster, with two different labels and values
for delta.

We used the value of the argument delta to set the command line arguments, but we also set it as a test option. Then,
if we want to run only those tests with --delta, we can do it with a filter:

ats -f 'delta' suite

We might also choose to modify this example to include group() and endgroup() at the top and bottom of runAnd-
Post; the group call could set options that we wanted in each test statement, and we would save all the output in case of
failure of any part of it.

16 Chapter 2. The ATS Tutorial, Andyroid

ATS Documentation, Release 5.5

2.3.6 Leveling

ATS has a built-in leveling filter. Using stick to set a value, you can break up tests into levels and execute only those
below a certain value, or between certain values:

source('andyroid/andyroid.ats')
andyroid = get('andyroidTest')

stick(level=10)
andyroid('test1.in', label='test1')
andyroid('test1.in', label='test1d', delta=True)

stick(level=20)
andyroid('test2.in', label='test2')
andyroid('test2.in', label='big run', delta=True,

level = 30)

executed with command-lines such as:

ats --level 10 suite
ats -f 'level >= 4 and level =< 12' suite

These two levels, 10 and 20, might correspond to daily and weekly tests for example. We recommend leaving some
room to change your mind.

Introspection

When a file is sourced, the normal action is to execute the contents of that file using the ATS vocabulary. However,
magic is possible! Before explaining how to do the magic, let’s understand the motivation for it.

An expert on the some area of andyroid may have a test routine, say “testX.in”, that he uses, running the program with
some variety of test inputs. However, another member of the team will in general not know how to do this. So it would
be nice if the expert had a good way to embed in the test the knowledge of what parameters to use to run it, without
interfering in the ability of the expert to run it by hand in a different way.

Now, strictly speaking you don’t have a problem here. You can have a separate test file, testX.ats, and this file can have
test lines for each test the expert believes should be run, perhaps also giving them appropriate levels, time limits, etc.

However, that often leads to having this extra file for absolutely no reason other than to make this information available
to ATS. And so is born the concept of “introspection”: ATS looks inside a file it is about to source and discovers that
it is both the input file to be tested and the instructions on how to test it, the latter appearing to be comments.

For example, assuming andyroid uses a “#ATS:” at the start of the line to denote magic comments, testX.in might look
like this:

#ATS:andyroid(inputFile=SELF, label="testX easy")
#ATS:andyroid(inputFile=SELF, delta=True, label="testX hard")
... body of the testX file

This would cause source(“testX.in”) to actually create two tests, where the word SELF will evaluate to “testX.in”. The
file will not be further sourced, so the language used in the rest of it need not be Python.

If you wish to source a file with a different magic commenting convention, this is possible – see the User’s Manual
explanation of the source function.

2.3. Structuring Your Test Suite 17

ATS Documentation, Release 5.5

Putting It All Together

The example given here in file suite is expanded in file fancySuite. There you can see use of many of the concepts
discussed here and in the advanced section below. Note that the file begins by sourcing that same andyroid.ats file that
we used before. It then starts the testing with Test/main.ats, which in turn sources files in directories simple, delta, and
psweep.

In directory simple there is a test that is going to fail. It has been given an option “development=True”. A default
value of False has been given to the other tests by using a glue statement in main.ats. Since we used glue and not
stick, this value persists into the subdirectories.

In directory delta there are some tests that turn on the --delta option.

In directory psweep we see that in fact psweep.ats is the input file for Andyroid, but introspection is used to execute it
many times with different values of alpha.

2.4 Advanced Topics

Modifying ATS itself should rarely be necessary. The techniques in this chapter show how much you can do with
customized drivers and machine specifications.

2.4.1 Expecting Failure

Applying the tilde (~) operator to a test marks it as a test that is expected to FAIL. Thus:

~test(....)

will be considered to have passed only if it ends up with status FAILED. The status will be changed to EXPECTED
and a entry made in the t.notes list documenting this fact. See the reference manual for further details.

2.4.2 Postprocessing

Postprocessing the results of the ATS run can be done using a custom driver or using the onExit facility.

2.4.3 Using the Log

One of the defined vocabulary items is an object named log; it acts like a function and prints its arguments into the log
and / or on the terminal, space separated and terminated by a newline. For example, if you put this in your sourced file:

log('Entering test section', 'foo', echo=True)

then “Entering test section foo” will be printed to the log and to the terminal. This may give you a good fuzzy feeling
if you are unsure of what tests are being initiated.

The echo value controls output to the terminal. Another flag, logging, controls whether or not the output is stored in
the log.

18 Chapter 2. The ATS Tutorial, Andyroid

ATS Documentation, Release 5.5

2.4.4 Using Magic Output

When a test writes something to its standard output that begins with some magic prefix, ATS captures those lines
and stores them in the test object as a list (test.output). The lines have their final newline removed. If the option
hideOutput is True, such output is written in the log when the test finishes. By default it is False.

The magic output prefix is set in the test’s option magic; the default value is #ATS:.

Note: This differs from the magic argument to source; they have the same default but otherwise are not connected.
The source magic controls the introspection process for input; the test magic option controls the capture of part or
all of the output from running the test.

Setting the magic output prefix to None prevents any output collection.

The list would be available to any post-processor using onExit or a custom driver. You may wish to set --hideOutput
if you are just going to post-process.

Output Magic Example

If we define a test with a magic option of “shazam!”:

test1 = test(executable=something, ..., magic="shazam!")

Suppose the test runs and prints:

shazam!4.2 6.8

After the test exits, test1.output is ["4.2 6.8"].

Capturing All The Output

Any test with a magic option which is an empty string (formed by using two consecutive single or double quotes) then
all the output from the program is captured and stored in the test’s output attribute. You can then do something with
it via postprocessing or view it in the log.

A Note on Notes

Each test also has an attribute notes, a list of strings. These notes are currently used to note that certain things have
happened and are used in the summary of results. You can append strings to this attribute if you wish.

2.4.5 Making Custom Drivers

The main program ats is a very short script; stripped of some error reporting it reads:

#!/env/bin/python [this line adjusted on installation]
import ats
ats.manager.main()

ats.manager is an object that controls the ats run. Before you call main, you can do other things such as register
onExit functions. You can massage the arguments (sys.argv[1:]) and pass the resulting string as main's argu-
ment. (Python’s shlex module can help manipulate argument lists.).

2.4. Advanced Topics 19

ATS Documentation, Release 5.5

After main returns, the master list of tests is ats.manager.testlist. All the statuses are available as attributes in
the ats module.

For example, this driver would add a list of tests that failed in some way to a database:

#!/env/bin/python [make sure it points to ATS's python]
import ats
from ats import CREATED, INVALID, FAILED, TIMEDOUT, manager
manager.main()
failed = [CREATED, INVALID, FAILED, TIMEDOUT]
(open the database)
for test in manager.testlist:

if test.status in failed:
(write test.name and details to database)

(close the database)

The task of installing this script alongside the main ats script, and adjusting the first line, can be handled with a separate
setup.py script or by editing setup.py to add another script before installing. Change this line in setup.py:

scripts = [codename]

to read:

scripts = [codename, "your_script_name"]

If you need tighter control, instead of calling main you can call its constituent parts:

from ats import manager
manager.init(clas) # note, string argument

omit clas = use command line
manager.firstBanner()
manager.core()
manager.postprocess()
manager.finalReport()
manager.saveResults()
self.finalBanner()

Here is what those pieces do:

• init processes the command line and the machine gets defined. The function has 3 possible arguments: a
command line, and two call-back functions for adding and examining command-line options.

• firstBanner initializes the log – before this has been called, using the ats.log object will just write to the
terminal. After this call, the manager vocabulary is “up”, so you can safely call things like glue, define, test,
etc.

• core does the “phases” of collection, sorting, and execution.

• postprocess calls the user’s onExit routines.

• finalReport writes the detailed report.

• saveResults creates the atsr.py` file.

• finalBanner writes ATS’ summaries and exit messages.

Please let the authors know of any needs for further refinement.

20 Chapter 2. The ATS Tutorial, Andyroid

ATS Documentation, Release 5.5

The handyAndy Custom Driver

Andyroid has a little custom driver handyAndy. This driver takes care of the sourcing of andyroid.ats and does
some postprocessing looking for failures that did not have the the option development set to True; these are true
failures. If users used handyAndy instead of ats itself, the source - get procedure could be left out of all the ATS
input files.

2.4. Advanced Topics 21

ATS Documentation, Release 5.5

22 Chapter 2. The ATS Tutorial, Andyroid

CHAPTER

THREE

REFERENCE MATERIAL

3.1 Test Selection and Execution

Tests are defined in ATS input using two commands, test and its little brother, testif. However, not every test that
gets defined is necessarily going to be executed. The user can define logical conditions (filters) that a test must satisfy
to be chosen for execution, and the hardware available may cause others to be skipped.

In order to make it easier to structure suites of tests, there is an elaborate set of facilities involving filters, command-line
options, and arguments to test statements, as well as facilities for grouping and ordering your test executions.

3.1.1 ATS Execution and Command-line Options

In specifying the names of input files, you can give the filename or omit the filename extension. ATS will attempt to
find the file using its name, then with a .ats extension, and then with a .py extension.

Unix or Mac

To start ATS on a Unix system or Mac, execute this line in a terminal window:

ats [options] [input files]

Note that the --exec option is frequently used to define a default executable, but any given test can specify any exe-
cutable as the program to be tested.

Before executing ATS, it may be desirable to have defined the environment variables MACHINE_TYPE and / or
SYS_TYPE; and there may be others for testing particular executables. Please consult with the owner of your local
ATS installation, and the owners of any custom ATS drivers you may be using.

Windows

Execution on windows can be done in the same way from a command window, but can be made more convenient by
defining a .bat file, such as:

C:\python27\python c:\python27\ats $*

These instructions need improvement as the first Windows users determine the right way to do this.

23

ATS Documentation, Release 5.5

Command-line Options

What follows are the the most important command-line options available in any ATS installation.

Note: The exact set of command-line options depends on the machine you are using and / or upon any custom driver
you are using for testing a particular program. To see the complete list for a given ATS installation, enter ats --help.

This will also show you abbreviations for some of the options.

--allInteractive Run every test in interactive mode.

--cutoff cutofftime This invokes a special mode in which no test is allowed to run longer than cutoff-
time, regardless of its actual timelimit option. Jobs that reach this threshold are
treated as failures in the sense that any jobs depending upon them are not run; but
they are given status HALTED rather than TIMEDOUT. The forms for giving the
time are the same as for --timelimit.

--debug Debug mode; prints more information in the log and on the shell window.

--exec EXEC Give the path to the code to be tested. The path is tilde- and dollar-expanded.

This option sets the environment variable ATSROOT, if not already set, to the
directory in which the executable resides. Most of the time this option is used,
and the executable so named is referred to in this documentation as the specified
executable.

However, tests with different executables can also be specified, by using the exe-
cutable=’/path/to/my/code’ as one of the test options. The purpose of ATSROOT
is to allow you to specify related tools for your code that are located in the same
directory as the executable. In specifying a test, you can use this variable in the
script or executable using either $ATSROOT or %(ATSROOT).

Note that you don’t have to have one main code to be tested. You can specify a
different executable for each test, or group of tests.

--filter FILTER Add a filter; may be repeated. Be sure to use quotes if the filter contains spaces
and remember that the shell will remove one level of quotes.

--glue FILTER Has the effect of executing glue(FILTER) before execution of the tests. May be
repeated. Be sure to use quotes if the filter contains spaces and remember that the
shell will remove one level of quotes. The glue function is used to set persistent
test option defaults.

--help Show the list of options and exit. There may be more options than are shown in
this document, such as batch or node control options.

--info Print information about ATS, such as version, path to the executable, and some
parameter values.

--keep Keep the output files from the tests that succeed. Normally the output from tests
that fail, or which must be checked, is kept.

--logs LOGDIR Sets the name of the log directory. The default log directory is arch.time.logs,
where arch will be an architecture-dependent name, and time will be digits of
the form yymmddhhmmss. All logs and the continuation file are placed in this
directory. The log itself is named ats.log.

--level LEVEL Set the maximum level of test to run. Level is simply a built-in easy-to-use filter.

24 Chapter 3. Reference Material

ATS Documentation, Release 5.5

--skip Skip actual execution of the tests, but show filtering results and missing test files,
and show additional details about the input.

--nobatch Do not run any “batch” tests..

--npMax value Value is an integer, the maximum number of tests to run at once (on a node, if
multinode machine). Some machines allow you to set this higher than the actual
number of nodes, at your own risk.

--okInvalid Run tests even if there is an invalid test. Examples are tests specifying missing
scripts or executables.

--oneFailure Stop if a test fails.

--serial Run only one job at a time.

--timelimit TIMELIMIT Set the default timelimit test option. TIMELIMIT may be given as an
integer number of seconds or a string specification such as ‘2m’, or ‘3h30m20s’.
A similar notation can be used for filtering by time limit, such as -f ‘timelimit <
“30m”’.

--verbose Verbose mode. Both starts and finishes of tests are noted on the terminal, plus
other reports. Test failures are reported regardless.

--version Show program’s version number and exit.

3.1.2 Basic Operations

The goal of ATS is to execute a series of test problems. It does this by reading input files written in the Python language,
with some predefined ATS functions added. In particular, ATS supplies a function named test. Each execution of the
test statement defines a particular program to execute, including its command line and a variety of options used by
ATS to know how to run it or to decide not to run it.

After running the tests, the ats prints a summary of which tests have passed (that is, returned with a normal exit status)
and which have failed.

The second basic statement is the source statement, which causes a file to be read containing additional commands. An
introspection procedure, described below, is also available to allow scripts meant as problem input to contain definitions
of how they are to be run when run by ATS.

Retrying Failed Tests

If any tests fail or are not completed, a “continuation” file is written and a message issued in the summary section
giving the name of the file. The continuation file is named continue.ats and it is inside the log directory.

You can rerun the exact same ATS command, adding the path to the continuation file as an extra command-line argu-
ment.

Note: You must run the exact same command with this added argument at the end of the command line.

Doing this will redo those families of tests that had a failed member. This process may be repeated until all tests pass.
In your log, tests that had passed before well be marked “Previously passed” and batch jobs will be “skipped”. The
continuation file is pretty self-explanatory and you can edit it with thought.

Note that if a descendent of a test failed, the test will be rerun because the error might have been in files produced by
the parent test, even though it appeared to pass.

3.1. Test Selection and Execution 25

ATS Documentation, Release 5.5

The intention of this facility is to let you fix your code without having to rerun all your tests. For correctness, you
should rerun everything once you believe you have corrected all errors.

Results Facility

Each run creates an atsr.py file in the log directory. This file, if run under Python, creates one variable named “state”,
which is an object that is a dictionary whose values can be read and written using either dictionary or attribute notation.
This type is called an AttributeDict.

The object state has attributes corresponding to the major features of the manager object, including a machine and
testlist, which is a list of AttributeDicts, each encapsulating the major properties of each test.

Two methods in the manager object control this facility, which may be used by custom drivers.

onSave(saver)
Registers a function saver(results, manager), which will be called when the data for the state is col-
lected. It may modify the AttributeDict results in any way it likes, usually by adding to it. Calling results.
clear() would be a way of minimizing the use of resources devoted to this file.

onSave is available in the test environment also, for use in input files. Note that the call does not cause the save
of the file at the time it is executed.

Three other manager methods can be called from custom drivers.

getResults()
Returns the AttributeDict containing the state. The manager’s machine and, if set, batchmachine, are given
a change to contribute fields to the end result, and finally any onSave-registered routines are called in the order
they were registered.

saveResults(filename='atsr.py')
Save the state to a file using given file name; if not absolute, put it in the log directory.

printResults(file=sys.stdout)
Do the actual job of writing the state file. Here file should be an open file handle. You would only use this
function if you wanted to add something to the file other than the state variable.

Normally saveResults creates the file and asks printResults to call getResults and print the returned state into
the file, preceded by a header that imports the symbols in the ats module so that the code will execute correctly.

Interactive inspection of the resulting file is most easily accomplished with an interactive Python session, such as:

cd <logdirectory>
python -i atsr.py
print "Number of tests = ", len(state.testlist)
print "Machine name", state.machine.name
print "Number timed out", \

len([t for t in state.testlist if t.status == TIMEDOUT])

Note that ATS statuses will compare equal if they compare to another status or the name or the abbreviation. So in the
last line above, TIMEDOUT, “TIME”, or “TIMEDOUT” would all work.

To compare different files you can rename state as you read it:

d= {}
execfile("atsr.py", d)
state1 = d['state']

You can change the name of the file to be used by setting manager.saveResultsName in your input file. If not an absolute
path, the file will be created in the logs directory.

26 Chapter 3. Reference Material

ATS Documentation, Release 5.5

3.2 Controlling Input

3.2.1 File Sourcing

source(*paths, **vocabulary)
Process one or more paths as if each was the name of an input file given on the command line. (This function is
the same as manager.source)

The current stuck options are saved upon entry, cleared before beginning processing, and then restored on com-
pletion. See stick below for further details.

Path names are expanded both for tilde and environment-variable names using the dollar sign.

The vocabulary items can be any number of keyword = value pairs.

Vocabulary words are added to the environment in which input files are compiled by Python. The scope of this
environment is just within the input of the paths given to this source command. To add a vocabulary value to all
subsequent source commands, use the define command, described next.

The vocabulary word introspection can be used to change the commenting convention used for ATS’ introspection
facility. Details are given below.

define(keyword=value, ...)
adds one or more keywords to the vocabulary used by the source command to parse input. This is the same
function as manager.define.

undefine(keyword, ...)
removes one or more keywords from the vocabulary used by the source command to parse input. This is the
same function as manager.undefine.

showDefine(*keywords, **options)
logs the current definition of one or more keywords in the vocabulary used by the source command. If no
argument is given, all the definitions are shown. This function is used to help debug your vocabulary setup. The
options may include echo and logging, and are passed on to the call to log. The defaults are both True. This is
the same function as manager.showDefine.

A file may be ‘sourced’ because it was given on the command line or because a source function was executed with it
as an argument. (Note: In what follows it is is assumed that a line that starts #ATS: is a comment to your application;
however, it is possible to change the commenting convention to suit your input convention, using the second argument
to source.

Examining and prioritizing tests

After collection of the tests the user may wish to examine or alter the tests before they are executed. This is done by
registering one or more routines to be called (in the order in which they were registered) by using onCollected. See
also onPrioritized, below.

onCollected(routine)

The routine registered is called when the input is complete. It is given the manager object as its single argument. The
routine thus has access to the manager.testlist.

The routine may make use of the routine that ATS itself is about to use to divide the tests into interactive and batch
tests:

interactiveTests, batchTests = manager.sortTests()

3.2. Controlling Input 27

ATS Documentation, Release 5.5

You can effect what happens next by changing statuses (such as setting the status to BATCH or FILTERED or CRE-
ATED (i.e., interactive)) or change totalPriority (see below).

You also have a chance at this point to use each test’s directory attribute to prepare the file system, or to build data
structures for later use in a postprocessor.

Use this facility with caution. Do not attempt to change tests that would not have executed at all into ones that will. If
you change a label it must be unique when you are done. Do not alter serial or group numbers.

After the onCollected actions, the scheduler prioritizes the interactive tests. The totalPriority attribute of each
test is set to the sum of the test’s own value plus the sum of the priorities of each test that must wait for this one to
complete. (Such conditions are created by dependencies or wait or group commands.)

The user may wish to examine or alter the priorities of the tests tests before they are executed. This is done by registering
one or more routines to be called (in the order in which they were registered) by using onPrioritized.

onPrioritized(routine)

The routine should take a single argument, interactiveTests. The intent is for the user to examine or alter the
totalPriority attribute of a test. Altering priority attributes will not work. Altering anything else about the
test is probably ill-advised.

In summary, there are two ways to change the totalPriority attribute: in an onCollected routine, which will
contribute the new value to its predecessors, or in an onPrioritized routine, where you are setting the final absolute
value.

3.2.2 Using Introspection

When a file is sourced, ATS looks to see if the file contains any lines that begin with the five characters #ATS:. If so,
the set of such lines with the leading #ATS: removed will be executed as Python code. The remainder of the file will
be ignored. This procedure is called introspection.

Note that Python’s indentation rules apply, so there should not be any spaces after the #ATS: except on lines that should
be indented.

For example, continuation of lines is allowed in the normal Python manner:

#ATS:test('myfile.py',
#ATS: 'my command line args',
#ATS: np = 4)

Picture the first five characters as defining the left edge of the lines to be executed.

During this procedure, the symbol SELF will be defined to be the name of the file being sourced. Thus a line such as:

#ATS:test(SELF, 'command line options', np=4, w=2)

will cause the file to be tested with the given command line, using the options np = 4 and w = 2 as context for filtering.

A file may contain many such lines, in order to exercise the same test with a variety of parameters. Also note that not
all the #ATS: lines need to be ATS commands; they can be any Python code. They can also include log commands,
source other files, etc.

28 Chapter 3. Reference Material

ATS Documentation, Release 5.5

Changing the introspection convention

If a value for the vocabulary word “introspection” is given, it should be a python function which, when given a line,
returns None or the value of the line as introspection. The default is a function that returns None unless the line begins
with #ATS:, in which case it returns the line less that prefix.

By prescribing your own value for introspection, you can allow the introspection process to work on source files with
a different commenting convention than “#”.

In particular, to change the default function used for introspection, just use define after you declare it. For example:

def asteriskinterpolation(line):
"Any line that starts with *ATS: is magic"
if line.startswith("*ATS:"):

return line[5:]
else:

return None
define(interpolation=asteriskinterpolation)

3.2.3 Grouping

If you have a test that creates some files for postprocessing, you can group that test with the related ones.

You begin with:

group(independent=False, report=False, **kw)

and after defining some tests, finish with:

endgroup()

A group is also ended by another group statement, or the end of the current input file. The arguments to the group
call become default options for each test defined inside the group. They can be overridden by options in the test and
testif statements within the group.

Only the first test result will be included in the final reports unless some member of the group fails, or you change the
report argument to True. The output files of the entire group will be kept if anything fails; otherwise the usual keep
options will prevail.

The independent test option determines if a test will block any other test (other than ones in its group) that uses the
same directory. By default, then, a group will lock-out any non-independent test or group from running in the directory
or directories its tests use. This is not different than the default behavior of ATS, but is a convenience for making sure
that the members of the group will not be interleaved with other, non-independent tests that use the same directories,
if you have glued or tacked or stuck independent to be be True.

These two arguments are used as test options for all tests in the group, but for any particular test can be overridden by
an explicit option in the test statement itself.

Note that grouping does not make each test depend on the preceding tests in the group. Two members of the group
may execute together. It also does not make the failure of one test skip another. To achieve dependency, use the ‘testif’
facility.

3.2. Controlling Input 29

ATS Documentation, Release 5.5

3.2.4 Wait

It is certainly possible to make two tests that appear to be independent but which cannot in fact run simultaneously.
ATS prevents many cases of this due to its reluctance to run two tests in the same directory at the same time. If that
fails to solve the problem, and the group or the testif statements are not sufficient, you can try the wait statement:

wait()
All the tests defined so far in this source file will be finished before proceeding to any tests defined later in this
source file. Tests defined in other files that are sourced after the ‘wait’ must also wait for all the tests before the
wait in this source file.

wait() may be a useful way to express massive dependencies without using excessive testif calls. However, if used
excessively, wait may cripple ATS’s ability to run tests simultaneously.

You can debug your wait structure with this command:

ats yoursource --skip

This will show a list at the end of the log file, under “ATS RESULTS”, showing the serial numbers being waited for by
each test.

When all tests are completed, ATS issues a final report and runs any postprocessors that have been registered using the
onExit facility described later.

Example

Suppose we have this test file “waitforit.ats”:

glue(executable = "/bin/ls")
test(label='first')
test(label='second')
wait()
test(label='third')

Then the third test will not execute until the first two are done – but this says nothing about the order in which the first
two will execute.

Suppose now we add a source of another file, so we have:

glue(executable = "/bin/ls")
test(label='first') #1
test(label='second') #2
wait()
source('waitfor1.ats')
test(label='third') #6

with the file being sourced containing:

test(label='waitfor1 first') #3
test(label='waitfor1 second') #4
wait()
test(label='waitfor1 third') #5

We have thus defined six tests in all. The output of the debugging process is:

30 Chapter 3. Reference Material

ATS Documentation, Release 5.5

Interactive tests:
#1 INIT ls(first) ready
[]

#2 INIT ls(second) ready
[]

#3 INIT ls(waitfor1 first) ready
[1, 2]

#4 INIT ls(waitfor1 second) ready
[1, 2]

#5 INIT ls(waitfor1 third) ready
[1, 2, 3, 4]

#6 INIT ls(third) ready
[1, 2]

The parts in square brackets are lists of the tests this one must wait for. (The list will include any tests of which this
one is a dependent.) So we see for example that #6, the last test in the main file, waits for the first two tests, because a
wait() occurs after #2, but it is not affected by the wait statement in the sourced file. In that file the first two tests are
waiting for the first two, and the third waits for the first four.

3.3 Executing Tests

ATS attempts to execute as many tests as it can at the same time in order to keep the computational resources it has been
given busy, subject to respecting the test options priority and independent, and the group and wait statements.
The following sections describe this process.

3.3.1 Scheduling

After the ATS has read all the input and knows what tests are to be run, it examines the collection and combines the
information generated by the group, and wait commands with the test dependencies to figure out which tests must
execute before others. It can then combine the priorities of tests to determine a preferred order of execution – which
however will be subject to processor availability.

This work is done by a scheduler object. A standard scheduler is provided, and is an attribute on the machine object.
A user could potentially modify it by inheritance from its defining class, schedulers.StandardScheduler.

Each test has a priority. By default the scheduling priority (totalPriority) is the number of processors required by
the test plus the priorities of any tests which cannot execute until this one is finished. In this way those tests with a lot
of dependents are started early.

A test may specifiy its priority as an option “priority=n” where n is a nonzero integer. A test whose priority is zero or
less will not be run. Thus, a long-running 1-processor job without dependents might profit from being given a priority,
say 3, so that it starts earlier. Note that an np = 0 job requires 1 processor.

As tests are selected to be started, the highest-priority job that will fit on an available machine is chosen. You can
examine the tests in postprocessing if you want to understand what influenced the scheduling:

• Test option priority,

• Test attribute totalPriority,

• Test attribute group,

• Test option independent (described below)

• Test attribute runOrder, an integer indicating the order of test launch.

3.3. Executing Tests 31

ATS Documentation, Release 5.5

Note: Important: by default two tests will not be run in the same directory at the same time.

This is a modestly conservative scheme to avoid common resource conflicts when testing one file with different param-
eters.

If you know a test does not have such a problem, you can give it the option independent = True. Note that the group
command makes the default value of independent False for all members of the group, overriding anything except an
actual option in the test statement. Thus if you do not want this behavior for the group you must use independent =
True as an argument in your group command.

The standard scheduler sorts the groups by the highest priority test in the group. In effect, every member of a group
behaves as if it has the priority of the highest-priority test in the group. This ensures a large prejudice towards running
members of a group once it has started, until they are all complete.

3.3.2 Progress Reports

When a test starts this fact is shown on the terminal output. You can use the command option --verbose to cause test
completions and other additional events to be reported as well. All the information is always in the log. Additional
output is generated by the --debug option.

Every minute ATS issues a report on its progress to the terminal only.

3.3.3 Output Files

The standard output and standard error of a test are written into files in the directory where the logs are written. These
files are (usually) removed when the test concludes successfully; for a group, this occurs when all members of the
group have succeeded.

The name and label of the test script or executable, along with the test’s serial number, are used to create the file names.

The –keep option prevents the removal of these output files even when the tests are successful. They are also kept if
the test has the option keep=True or check=True.

See also:

Postprocessors set using the onExit facility can access the magic output of a test as test.outputats.

3.3.4 Interrupting a Run

A control-C interrupt will terminate the program and all the tests it is running. Any test started but still not finished
will be reported in RUNNING status.

3.4 Creating and Selecting Tests

3.4.1 Creating Tests

test(*args, **options)
This notation means that you can give positional, unnamed arguments, followed by keyword=value arguments.

• If you give just one positional argument, it is called “script”.

• If you give two, they are “script” and “clas”.

32 Chapter 3. Reference Material

ATS Documentation, Release 5.5

• If you do not give one or both positionally, they are given in the options, with their default values
being blank strings.

It is an error to give more than two positional arguments.

Positional arguments are allowed for backwards compatibility – it is preferable to name everything.

In the test function call:

• script is a file name, which may be be relative to the directory containing the input file or absolute. Note that
ATSROOT can be used in such names to designate either a preset environment value or the directory of the
specified executable. The script if given will be used as the first argument on the test’s command line, and will
supply a default name for the test.

• clas is a string giving the command-line arguments to be passed to the execution. Before doing so, python string
interpolation is used with the options dictionary. This means, for example, that:

test(clas = "-in %(input)s -parallelism %d", np=4, input='foo')

will result in:

clas = "-in foo -parallelism 4"

You might want to do this if, for example, this expression for clas was constant over many tests except for these variations
of input and np. Then you could stick or glue this value for clas and not have to repeat it over and over.

Options can be any keyword = value pairs declaring the properties of this particular test; these are used in filtering and
also serve as documentation for the test’s properties.

test returns an test object whose attribute ‘status’ is one of the following attributes of the ats module: CREATED,
RUNNING, HALTED, PASSED, FAILED, TIMED, FILTERED, SKIPPED, BATCHED, INVALID.

Warning: Testing the truth value of a test object, such as using it in an if clause, causes the test to be marked
FAILED. See testif below.

The test object will execute in the directory test.directory. This value can be set in the test options, but if it is not (which
is usually the case) it is set to the directory in which the script resides, if the script is given. Otherwise it is set to the
directory in which the test statement was read.

Note that if executable is 1, the script isn’t really a script, so directory is set to the directory in which the test statement
was read.

testif(othertest, *args, **options)
This is the same as the test statement except that this test will only be run if othertest is eligible to run, has
been run, and has been successful.

For example:

t = test('foo.py', 'dumpat=25')
testif(t, 'foo.py', 'restartat=25', label='restart test')

Explanation: This works because the test call returned a test object, t.

3.4. Creating and Selecting Tests 33

ATS Documentation, Release 5.5

Expecting Failure

Sometimes you want to make sure a test will fail. To do this use the tilde (~) operator on the test:

~test(....)

The test will count as passed if its status ends up FAILED.

You can also set the expectedResult attribute of the test directly to something other than PASSED:

t = test(....)
t.expectedResult = TIMEDOUT

It is pointless to have a dependent of a test that is not expected to PASS. It will be SKIPPED.

3.4.2 Test Options

Each test can define arbitrary keyword = value pairs. With the exception of a few special options described below, the
keyword names are arbitrary. Most options do not affect the running of the test, just the decision about whether or not
to run it.

There are five lifetimes of option specification:

• defaults (often with command-line options to change the value),

• permanent (see glue and unglue),

• current and descendent files (see tack and untack)

• per sourced file (see stick and unstick), and

• per test (using the options portion of the test command).

Reserved option names

While you are free to use any desired scheme for options and filters, do not use the following names except for the
purposes described. These are listed roughly in the order of their frequency of use by the end user.

label label can be set to a string that will be appended to the name of the test to identify the test more fully. Thus, two
different runs of the same script can be distinguished. label by default is the test’s serial number, the number
that distinguishes the order in which the test was defined. labels are adjusted after all tests have been read to add
distinguishing characters, so that no two tests have the same label.

name This is the test name, as is printed out in the summary. If a script is given, it is that file name less the extension.
Otherwise it defaults to the base name of the executable.

np The option ‘np’ is reserved for specifying the number of processors to be used to run the program if the machine
is a parallel processor. np = 0, the default, means a scalar run. np = 1 will be treated as a serial run on serial
computers. np can be used in filters, e.g. np < 32.

executable This option sets the path to the program to be run for this test. The default value of this option is usually
set by the –exec command line option.

The executable program will be considered to have passed or failed depending on its exit status.

The executable may contain options after the path; it may also be given as a list of strings, the first component
being the path and the rest options. If the path contains an internal space, you must use the list form.

Deprecated since version If: executable is 1, the first positional argument to the test function is the name of the
executable program. It is preferable to use executable = /path/to/executable.

34 Chapter 3. Reference Material

ATS Documentation, Release 5.5

batch This option is used to run a test in batch by setting it equal to 1 or True. Note that the filter batch (which you can
set with the –filter batch command-line option) will restrict submissions to only batch jobs and the remaining
non-batch jobs are skipped.

check If check is not zero, this test is marked to be checked by hand rather than marked as passed, if it finishes normally.
Such jobs are reported separately in the summary.

keep If true, the test’s output files are kept even if it passed.

independent If independent is True, the user is certifying that there is no obstacle to this test executing at the same time
as any other test. Otherwise, by default tests are assumed to conflict with others in the same directory, because
they might write files there with the same names as those read or written by other tests. If two tests conflict,
they are never run at the same time. Judicious use of independent = True will increase ATS’s throughput. We
suggest that while a stick(independent=True) may be appropriate, in some test files, to glue this definition may
be reckless.

priority By default the priority of a test is np + the sum of the priorities of and dependent jobs. The priority option
lets you override this by giving an integer value. A value of zero means the test will be skipped.

env By default the environment passed to the test will be the value of the ATS environment os.environ. To mod-
ify this dictionary, give the option env=D, with a value D that is a dictionary of the additions or changes to
environment variables that you desire. If None, or not given, the default is used.

record If a test is given option record=False, it is not reported as a separate test unless it fails in some way.

timelimit Specifying a timelimit denotes maximum execution time for the test. For example, timelimit=”30m” will
kill the test after 30 minutes and give it TIMEDOUT status.

SYSTEMS SYSTEMS defaults to a list of one value. That value is the value of the “name” attribute of the machine
object ATS has discovered. A filter:

s in SYSTEMS

where s is this same value, is always used. Thus, by specifying SYSTEMS as
an option, the test will run only on the machines(s) named in SYSTEMS.

magic magic controls the treatment of certain lines of test output. The default value is #ATS:.

If a test prints any lines beginning with the characters #ATS:, those lines will appear verbatim in the output, but
also will be printed, less the #ATS: prefix, in the summary messages that appear when the test finishes.

If magic is set to None or a blank string, the entire parsing of the output file is skipped.

hideOutput If true, do not print magic output lines in the log.

Extra Arguments On The Executable

If you want to always execute a given application with some fixed arguments in addition to others that vary, you may
give them as part of the executable option to a test or on the command line. For example:

my_application = "/foo/bar -a -b"
test(clas="-d", executable=my_application)

will result in the execute line /foo/bar -a -b -d.

Be careful about quoting levels. For example, to make a test that did the equivalent of:

python -c "print '3+4'"

you must use an extra quotation level:

3.4. Creating and Selecting Tests 35

ATS Documentation, Release 5.5

my_application = "python -c"
test(executable=my_application, clas = "\"print '3+4'\"")

3.4.3 Filters

A filter is a string that can be evaluated to a logical result. Filters can be defined with the command line option -f or
–filter, or using the function filter. Helper functions can be defined using filterdefs.

Each test declares options: these are keyword = value pairs. To decide whether or not to execute a test, each filter is
evaluated using Python’s eval function, in an environment consisting of these symbols:

• The options set by the test (including current ‘stuck’, ‘tacked’, and ‘glued’ option values described below)

• Symbols created parsing of text added by calls to filterdefs.

• The ats environment, consisting of these objects, which are each described in this document:

manager, test, testif, source, log, filter, filterdefs, stick, unstick,
tack, untack, glue, unglue,
getGlue, getTack, getStick, sys, os, AtsError, AtsTest, abspath,
is_valid_file, is_valid_executable, statuses,
CREATED, RUNNING, INVALID, PASSED, HALTED,
FAILED, BATCHED, SKIPPED, FILTERED,
SYS_TYPE, MACHINE_TYPE, MACHINE_DIR, BATCH_TYPE,
onExit, onSave, getResults.

• SELF is equal to the test object and some of its attributes may be interesting for filtering (name, label, basename).

If the filter returns true when evaluated, the test will be run. Otherwise, or if the filter gets a NameError when evaluated,
the test will not be run.

Thus, a test run with:

test('mytest.py', x = 7)

would pass the filter ‘x==7’ but not pass the filter ‘x==5’ nor the filter ‘y==7’ (because the symbol y is not defined by
the test).

3.4.4 Additional ATS Vocabulary

ATS input is written in a expanded dialect of Python. That dialect contains the following facilities.

Debugging and logging

debug([value = None])
debug() can be called in your input; it will return the current debug level: zero if –debug was not specified, or
one if it was.

You can give debug an argument to set a new value, such as debug(2), and issue conditional code depending on
the value which is returned by debug().

log(*items[, echo=False, logging = True])
The log written by ATS, and the terminal (in the form of stderr), can also be written to from user input. The log
function adds a line to the log, using the enumerated items as if in print statement, unless logging is False. If
echo is True, it prints to standard error.

36 Chapter 3. Reference Material

ATS Documentation, Release 5.5

With no items log prints a blank line.

For example:

log("I want to eat", 5, "donuts")

prints:

I want to eat 5 donuts

terminal(*items)
This is a version of log that writes only to the terminal.

Other methods and attributes in the log object are:

log.indent()
Increase the current indentation.

log.dedent()
Decrease the current indentation.

log.reset()
Reset indentation.

logging
A switch that controls logging to file

echo
A switch that controls logging to stderr.

Shortly after it gets organized, log sets the defaults for logging and echo. To be SURE you write something to stderr,
use echo=True. And if you change logging or echo, or the indentation level, put things back as you found them, please.

It is not possible to log a partial line.

3.4.5 Manipulating Test Options

The following facilities provide for setting more-or-less persistent default values for test options. Each type listed will
override the ones above it while it is still in scope.

1. A default value for most options is built in to ATS.

2. Command-line options override the default. Command-line options are not available for every test option, just
the most important ones.

3. glued: Values set with a glue call. Such values apply until overridden by another glue call.

4. tacked: Values set with a tack call. These values apply until processing of the current file is finished, including
in files sourced by this one.

5. stuck: Values set with a stick call. These values apply only in the file in which the call appears.

6. group: Values set with a group call. Such values can be overridden by an explicit value in the test. Group values
last until the next group or endgroup, or the end of the source file.

7. explicit: Options given in a test or testif call always apply to that test.

Great care should be used with glued and tacked options, because they are not visible locally in files that are later
sourced “from above”, and a person working on one of these files may not realize they are inheriting a value already
that will take effect unless they override it. This will also cause the file to behave differently if used stand-alone as
opposed to sourced from another file. Use the least scope that will get the job done for you.

3.4. Creating and Selecting Tests 37

ATS Documentation, Release 5.5

Putting tests in groups has other consequences you should be aware of. See in particular directory blocking.

Here are the functions for controlling test option defaults:

stick(**keys)
Add the keyword = value pairs to the current dictionary of stuck test options. Stuck options persist until the end
of the current file but do not apply in files sourced from this one.

A stuck option overrides a tacked or glued option, and is in turn overridden by an explicit option to test or
testif.

tack(**keys)
Add the keyword = value pairs to the current dictionary of tacked test options. Tacked options persist until end
of the current file and do apply in files sourced from this one.

A tacked option overrides a glued option, and is in turn overridden by a stuck value or by an explicit option to
test or testif.

glue(**keys)
Add the keyword = value pairs to the current dictionary of glued test options.

Glued options apply to all subsequent test definitions. A glued option can be overridden by a stuck or tacked
option, which in turn can be overridden by a value given in a test or testif statement.

Think of glued options as permanent changes to the default value of an option. One use might be to
be sure every test has a value for some option name so that a filter can be constructed.

Notice the language here carefully. In the following example, the value which will be used in the test for the option
color is “blue”:

stick(color = "blue")
glue(color = "red")
test("myscript", clas = "%(color)s")

The stuck option overrides the glued one of the same name.

Items can be removed from these dictionaries with:

unstick(*names)
Remove each name from the list of stuck options. If no list is given, remove all the stuck options.

untack(*names)
Remove each name from the list of tacked options. If no list is given, remove all the tacked options.

unglue(*names)
Remove each name from the list of glued options. If no list is given, remove all the glued options.

Filters are constructed with:

filter(*filters)
Add each string argument as a filter. With no arguments, delete all existing filters. Note that if you attempt to
filter using the name of an option for which you have not set a default using the facilities above, then any test in
which the option is not specifically set will be not be executed.

Each --filter command-line option is simply a call to this function.

The command-line option –skip allows you to test your filters without executing any tests.

To assist you in constructing filters we have:

getOptions()
Return a dictionary of the options as they would be seen by a test defined at the location of this call. Intended to
aide debugging of options.

38 Chapter 3. Reference Material

ATS Documentation, Release 5.5

filterdefs(text=None)
Add result of parsing text to the filter environment. Usually used to add functions to use in filters. If text is None,
clear the environment.

Despite the power available here, we recommend you don’t get too cute about it. The main thing is for it to be clear
what is happening.

3.4.6 Customization

The Andyroid Tutorial contains ideas on various sorts of customization. These include defining your own postprocessor,
main program, and application-specific input language extensions.

3.4.7 Using Levels

To use levels, make a master.ats file with stick commands separating the tests, such as this example input:

stick(level=10)
test("test1.py")
test("test2.py")

stick(level=20)
test("test3.py")
test("test4.py")
t5 = test("test5.py")

stick(level=30)
test("test6.p7")

this test sets a level explicitly, that overrides the "stick".
testif(t5, "test7.py", level=10)

The currently “stuck” value is set in every test that does not explicitly set level. Thus test3, for example, has level 20,
as if the level=20 were given in the test statement.

Executing ats on this file with the option –level 30 will execute all these tests. Executing ats with –level 15 will execute
only test1 and test2; test7 depends on test5, which has level 20, so it will not be run even though it has level 10.

3.4.8 The Test Class

When a test is created by the test or testif command, a test object representing it is added to manager.testlist. This
object is an instance of a class named AtsTest. Some users may wish to use the following details for debugging or
postprocessors or customization.

The class AtsTest is available to users as ats.AtsTest.

AtsTest(*args, **options):

stuck, glued, tacked
These are the current dictionaries for determining test options.

test_number
The counter showing the number of tests defined so far.

serialNumber
The unique serial number of this test.

3.4. Creating and Selecting Tests 39

ATS Documentation, Release 5.5

name
Set from an option to the test creation, or as the name of the script, or the name of the executable, plus the
label. Eventually each test’s name is made unique.

label
Set from an option to the test creation, incorporated in the name if given.

options
The options for this test, after resolution using defaults, stuck, tacked, and glued.

depends_on
If not None, the test instance this one depends upon.

dependents
A list of any direct dependents of this test.

exited
Has the job been run and exited?

output
A list of lines of magic output, newlines and magic removed

notes
List of notes from the run; user feel free to append to this list.

..attribute:: level

Test level set from resolved options. Same as options.level.

np
Number of processors required. Same as options.np.

batchDic
A dictionary that may contain various things for a batch job.

clas
A string containing the command line arguments after option interpolation.

executable
An Executable object specifying the executable’s full path.

directory
The full path to the directory in which the test is executed.

groupNumber
The number of the group to which this test belongs, if positive.

groupSerialNumber
The number of the test within its group definition.

outname
The path to the standard output file for the test.

errname
The path to the standard error file for the test.

message
Explains the current value of status.

runOrder
A number indicating the order in which the interactive tests were run.

shortoutname
An abbreviated form of outname used for labeling.

40 Chapter 3. Reference Material

ATS Documentation, Release 5.5

timelimit
An object of class Duration – timelimit.value is the limit in seconds. Duration objects can be compared
to integer numbers of seconds correctly.

waitUntil
A list of serial numbers of tests this one must wait for.

set(status, message)
Set the object’s status and message.

elapsedTime()
Returns a string, the formatted elapsed time of the run.

stick, unstick, glue, unglue, etc.
Class methods stick, unstick, glue, unglue, etc. are equivalent to the ones accessible in the vocabulary or
ats module.

There are other methods that are not intended for end users.

Test Statuses

There are eleven status values that a test can have. This value is stored in the test’s attribute status. Collectively this
set of a statuses is in the list ats.statuses and each of them individually is in module ats.

Each status has a four-character abbreviation, shown in parentheses. The status can also be accessed under this name
in the ats module. For example, PASS and PASSED are the same object. You can correctly compare two statuses
using “is” or “is not”, == or !=, or compare a status to a string representing its name or abbreviation, as in PASSED ==
"PASS".

The statuses are:

INVALID (INVD) The test was not properly stated. For example, it referred to a script file that did not exist. See the
log file for the error.

CREATED (INIT) The test was created but not (yet) run.

PASSED (PASS) The test was run and succeeded.

FAILED (FAIL) The test was run and failed.

EXPECTED (EXPT) The test ran and failed in an expected way.

TIMEDOUT (TIME) The test ran longer than its timelimit and was killed.

SKIPPED (SKIP) The test was created successfully but skipped for some reason. The reason is in the test object’s
attribute message.

FILTERED (FILT) The test was created successfully but filtered out for some reason. The reason is in the test object’s
attribute message.

BATCHED (BACH) The test was deemed eligible for batch processing, and has been shipped off to the batch system.
ATS does not know its fate.

RUNNING (EXEC) The test is running, or was running when an error or keyboard interrupt occurred.

HALTED (HALT) The test was stopped after running successfully for one minute. This status is only possible if the
--cutoff command-line option is used.

3.4. Creating and Selecting Tests 41

ATS Documentation, Release 5.5

3.4.9 Postprocessing

After ATS has finished executing tests, but before it exits, it calls any Python routines that have been registered with it
by calling:

manager.onExit(routine)

The routine should have the signature

def routine (manager):
...

The routine can do anything it wants. In particular, manager.testlist is available. Here’s an example of a trivial post-
processor in an input file:

def routine(manager):
passedTests = [test for test in manager.testlist \

if test.status is manager.PASSED]
print [test.name for test in passedTests]

manager.onExit(routine)
source ("set1.ats")
source ("set2.ats")

The postprocessing file is designed to make it possible to run postprocessing functions of this kind using the state
variable as the manager argument, rather than doing it as an onExit routine.

3.4.10 Test Suite Strategies

One of the problems with excessive choice is the paralzying effect of choice. There are a lot ways to do things with
ATS. So here we describe a basic strategy to use until you have enough experience to form your own opinion.

We strongly urge that you read the Andyroid Tutorial as well.

This scheme assumes your code sources are destributed over a set of directories with a common parent called Home,
with a subdirectory Test.

In each subdirectory with code that has a separate test (such as a unit test, or a test that emphasizes that coding) put a file
with extension “ats”. This file contains a series of source statements that get further input or are test inputs containing
introspective test statements).

:: test(clas = “-in myinput”, np = 1) source(“mysubdir/moretests.ats”)

Separate these inputs into levels with stick-level statements such as:

stick(level = 10)
...some tests...
stick(level=20)
...longer-running tests...
stick(level=30)
...still more...

You choose how many different levels you like. We recommend choosing well-spaced numbers in case you later change
your mind and want to insert levels between the ones you start out with. Note that any test can still specify a level on
its own that would override the stuck level.

As you go up your directory tree toward Home, put files that source the ones below it, until finally you have a tree
leading to a file, say “testsuite.ats”, residing in your Home/Test directory.

42 Chapter 3. Reference Material

ATS Documentation, Release 5.5

Then you can make a series of small drivers. For example, your shortest test suite my be driven by this file:

glue("level <= 10")
source("testsuite.ats")

Running ats with this file as its input will result in only tests with level 10 or less being executed.

When the team that maintains a certain area wants to add a test, they add it to the closest member of the test-file tree
relative to the source code they work with. They put it in the file at the appropriate level. This scheme leads to only rare
source-code control conflicts, and ones that are usually a trivial merge; this avoids the conflicts generated by having a
central test file.

Teams should be encourage to use introspection so that other members, less informed about how to test a certain area,
can nevertheless exercise a good suite of tests using ATS, while allowing the experts to still use the input file directly
with the code.

If there is one principle program being tested, it makes sense to use the -e option for it, and only explicitly specify an
executable when it is different.

:: mycode = ‘/full/path/to/my/code’ test(executable=mycode, script=’foo.py’)

The extended example in Examples/Andyroid gives you many more ideas about how to use ATS.

3.5 Porting and Custom Machines

ATS decides on which machine characteristics to use by examining the value of the environment variable MA-
CHINE_TYPE; or, if it is not defined, the value of the environment variable SYS_TYPE; or as default the value of
Python’s sys.platform variable.

The reason for this three-level structure is to allow you to distinguish machine architectures when you have machines of
the same basic type but with varied environments such as current OS level, parallel processing directives, or attached
hardware. For an ordinary user on a personal computer, there is no reason to do anything special.

Most of the interaction between ATS and the platform takes place in a machine module, defined by default in the sources
in file Lib/machines.py. Different behaviors are obtained by inheriting from this module, or one derived from it,
and overriding various methods. We then connect our new machine module to a value for MACHINE_TYPE with a
comment in our module file, and install that module in a directory in the Python distribution.

Porting ATS to a new platform is just one of the things you can do with the technique we describe in this section; you
can also do things like doing something special when a job finishes, inventing your own scheduling algorithm, etc.
You’ll need a decent knowledge of Python to do it, but you don’t need to be an expert.

If you invent a new value for MACHINE_TYPE, you can change the way ATS launches and finishes jobs and keeps
track of resources, amongst other things. You can add command-line options and react to the user’s use of them. Your
options will even appear when the user executes with --help.

To do this, you write a new Python source file, usually having a module name equal to your value for MACHINE_TYPE.
This file must define a new child of machines.Machine, and you must have a comment:

#ATS:name module class npMax

This line or lines defines the relationship between a MACHINE_TYPE and this module’s machine class and provides
the maximum number of jobs you wish to execute at once (or it may mean the maximum number of processors one job
can use in a parallel programming environment):

• name is the name to match with MACHINE_TYPE.

• module is the name of the module file, or SELF.

3.5. Porting and Custom Machines 43

ATS Documentation, Release 5.5

• class is the name of the class in that module to use as a Machine.

• npMax is a limit on np; if this number is negative it is a suggested default only.

• machine.scheduler is created by the standard __init__ method of the machine. If you want to create your
own scheduler you can replace this attribute. See Customizing the Scheduler below.

The file Lib/machines.py is well documented and it is usually not a large problem to get things working.

Once you have your module file ready, you write a setup.py file to go with it:

from distutils.core import setup
myMachines =[myMachine.py] # list your machine module files
setup(name="myAtsAddon",

author = "you",
version = "1.0",
description = "All About My Machine",
data_files = [('atsMachines', myMachines)],
scripts = ['mycustomdriver'], #if you have one

)

and then execute python setup.py install. Set the environment variable MACHINE_TYPE and run ATS. It will
report the machine module it has discovered.

In this setup.py file, the unchangeable word is atsMachines. This is the name of a directory below your Python
installation root where the machine files are found by ATS. The scripts line can be omitted if you do not want to install
your own driver.

3.5.1 Adding Test Options Via Machine

In a customized machine, the examineOptions routine can add entries to a dictionary, options.testDefaults.
These will be default option values for each test. For example, here is how you would add an option nt that could be
specified on the command line in the machine file:

def addOptions(parser):
parser.add_option('--nt', dest='nt', default=1, type='int',

help='Set default number of threads per test.')

def examineOptions(options):
options.testDefaults['nt'] = options['nt']

Of course, the machine would also have to examine and use properly the value of each test’s option nt; but it would
always have one, and hence it could be used in filters.

3.5.2 Customizing the Scheduler

The scheduler class StandardScheduler is defined in module schedulers. It handles issues such as priorities, and
enforcing rules for the group() and wait() commands, and the independent option.

Customizing the scheduler is possible but difficult. It should in particular supply a method testlist() that returns the list
of tests that are not yet completed. Inheritance is strongly suggested, so that you only change what you need to change.
You’ll probably want to change the machine too so that it creates the correct scheduler, but it feasible to create and
assign a new machine attribute scheduler at any point up to and including the call to machine.load.

The important thing is to maintain correct separation between the scheduler and the machine objects. The scheduler
must ask the machine for such things as canRunNow that are within the purview of the machine, and ask it about

44 Chapter 3. Reference Material

ATS Documentation, Release 5.5

whether jobs have finished. The machine contains an attribute running, a list of the jobs currently running. The
periodicReport in the scheduler does the basic report once a minute; a machine can call this and then add more.

3.6 The ats Module

The atsmodule can be imported in custom drivers and postprocessors. Resources available in it are all imported from
internal modules. These are documented further in the Appendix.

log, terminal
See the discussion of the log. terminal is simply a version of log that only writes to the terminal, not the log.

times
Is a module containing useful time-handling routines

configuration
Is the module that has information about the machine and command-line options.

manager
Is the manager object. It has in particular testlist, and the routines discussed above. It is defined in the
management module.

testEnvironment
Is the vocabulary dictionary.

AtsTest
Is the test class.

debug(value=None)
Is the debug function

exception AtsError
Is the class of exceptions thrown by ATS.

statuses, CREATED, INVALID, PASSED, FAILED, HALTED, SKIPPED,
BATCHED, RUNNING, FILTERED, TIMEDOUT, SYS_TYPE, MACHINE_TYPE

Discussed previously, these are available via the ats module as attributes.

3.7 Using A Batch Facility

3.7.1 General Information

When running ATS, if a batch facility exists, both the interactive jobs and batch jobs will run. You have to use the
facilities of that batch facility to find out what happened to those tests, because ATS will likely finish and exit long
before those jobs are done.

Unfortunately, the world doesn’t have a standard batch facility. So here is an example of using the MSUB batch system
at the Livermore Computing Center. Much of what follows would apply to any batch system.

To add a different batch system one must customize a batch machine to be installed in your ATS. For advice on how to
do this, please contact us.

The basics are simple: if a test has a batch = 1 option, it is a batch test. Each of the batch tests are individually
submitted to the batch system. The --allInteractive flag is available to execute such tests without using the batch
system. Otherwise, they are simply skipped if no batch system is found.

For the LC system in particular,

3.6. The ats Module 45

ATS Documentation, Release 5.5

• A testName.bat file is craated for the test.

• The test information is written to a “batchContinue.log”. This file will be a concatenation of all the batch tests
and will provide information about the tests.

3.7.2 Running Entirely In Batch

Submitting a lot of single batch jobs may overwhelm some batch systems. In that case it may be preferable to submit
just one big batch job. One batch job is created to run all the tests (both batch and interactive).

The ATS option --allInteractive is neccesary in the ATS command to prevent the tests from being submitted
seperately as batch.

An example of a batch script using MSUB at LC:

#!/bin/csh

#MSUB -N tmpAts0.157456004499.job
#MSUB -j oe
#MSUB -o tmpAts0.157456004499.job.out
#MSUB -q pbatch
#MSUB -l nodes=4:ppn=16
#MSUB -l ttc=64
#MSUB -l walltime=200
#MSUB -V # exports all environment var
#MSUB -A myBank # bank to use

setenv SYS_TYPE chaos_4_x86_64_ib

date
cd /my/work/directory/; atsb --allInteractive --numNodes=4 -useSrunStep Test/full.ats
date

The command-line options --numNodes=4 --useSrunStep are not a part of standard ATS. In this case, the ATS
machine type chaos_4_x86_64_ib has been defined in a custom machine file, and custom machine files can add
command-line options.

3.8 More Examples

3.8.1 Introspection

mytestA.py:
#ATS:test(SELF, batch=1, np=2, ...)
...mytestA problem...

mytestB.py:
#ATS:stick(batch=1)
#ATS:test(SELF, ...)
...mytestB problem...

myAts.ats:
tack(batch=1)

(continues on next page)

46 Chapter 3. Reference Material

ATS Documentation, Release 5.5

(continued from previous page)

source('mytestC.py')
source('mytestD.py')
source('mytestE.py')

In myytestA.py, a 2-processor batch job is created by introspection.

In mytestB.py, the test created through introspection will be run in batch, unless it happened to explicitly contain the
option batch = 0, because the stick call makes batch = 1 the default in this file.

Running myAts.ats, the tack makes batch = 1 apply also in the three files that get read. If this were a stick, it
wouldn’t apply inside those other files.

3.8.2 Test Control

Suppose the file mytest.py contains a test script. The script throws an exception if it gets an error. It has a command
line argument delta. Suppose mytest.py reads:

#ATS:log('mytest.py tests sanity of my group leader.')
#ATS:test(SELF, 'delta=0.5')
#ATS:test(SELF, 'delta=0.6', sanitycheck = 1)
#ATS:test(SELF, 'delta=0.7', np=4, sanitycheck = 1)
import physics
...command line processing to get delta's value...
...test problem....
...throws an exception if it fails...

If we run:

ats --exec myapplication mytest.py

then it is equivalent to running 3 tests:

myapplication mytest.py delta=0.5
myapplication mytest.py delta=0.6
myapplication mytest.py delta=0.7

The last one is run on 4 processors if the machine supports it.

Consider the command line:

ats --exec myapplication -f 'sanitycheck == 0' mytest.py

None of the tests are run; the first because sanitycheck is not one of its options, the other two because it is but the value
is not zero. We could make sanitycheck have a default value of zero for all tests in mytest.py by adding this line to the
top of mytest.py:

#ATS:stick(sanitycheck=0)

With this line added we would run only the first test.

Using the filter sanitycheck==1 would run the last two tests but skip the first. Using the filter ‘not np’ would run only
the first two jobs, since they have by default np == 0.

Suppose mytest.ats reads:

3.8. More Examples 47

ATS Documentation, Release 5.5

source('mytestA.py')
source('mytestB.py')

and mytestA.py reads:

#ATS:stick(batch=1)
#ATS:test(SELF,delta=0.1)
...mytestA problem....

and mytestB.py reads:

#ATS:test(SELF)
...mytestB problem....

If we run:

ats -e myapplication --nobatch mytest.ats

then only myTestB.py is executed, and execution of mytestA.py is skipped, since ats is not set for batch tests to run.
Note --exec can be abbreviated as -e.

If we run:

ats -e myapplication mytest.ats

then mytestA.py is submitted to batch and mytestB.py is run interactively. If there is no batch system, mytestA.py is
skipped.

In practice a batch facility, if present, would add further options for controlling itself, such as options to set accounts
or priorities or timelimits. The maintainers of such batch facilities will provide the documentation for them.

Finally,

ats --allInteractive -e myapplication mytest.ats

will test both myTestA and myTestB.

3.8.3 Resources For Learning ATS

The Examples directory in the distribution contains the sources that accompany the Andyroid Tutorial, including some
sample customizations.

The Test directory contains more examples, although care must be taken in reading them as some of these are designed
to fail.

At your particular location you may find other directories that define machines and batch systems for your local computer
center.

48 Chapter 3. Reference Material

ATS Documentation, Release 5.5

3.8.4 Quick Recipes

• To run only the batch tests:

ats --filter 'batch == 1' mytest.ats

• To run only the interactive tests:

ats --nobatch mytest.ats

• To run all tests as interactive tests:

ats --allInteractive mytest.ats

• To check your input add –skip; add –debug for even more information.

• To keep the output files even if the test succeeds, add –keep

3.8. More Examples 49

ATS Documentation, Release 5.5

50 Chapter 3. Reference Material

CHAPTER

FOUR

NOTES

This chapter contains documentation useful for maintainence, customization, and debugging.

4.1 Modules

The ats module contains several submodules documented below. The ats program imports the ats module and calls
the manager’s main routine. As documented in Custom Drivers, a user may create their own driver and even break
main down into pieces in that driver.

4.1.1 ats

4.1.2 configuration

The configuration module makes the basic discoveries about the machines, creates the log, requests command-line
options from the machines, and processes the options with call-backs to interested parties to examine them.

4.1.3 management

The management module is the main supervisor of the program, and is instantiated as a singleton object, manager.

4.1.4 tests

This module defines test objects and groups. However, these are not created directly but rather via functions in the
manager, test, testif, group, endgroup.

4.1.5 schedulers

The scheduler attribute of the machine is an instance of the StandardScheduler class.

51

ATS Documentation, Release 5.5

4.1.6 machines

(See also Porting.)

This module contains base definitions for interactive and batch facilities. To adapt to a new platform, inherit from
machine and override appropriate methods.

4.1.7 log

The log is an instance of AtsLog. The log object is callable (See the AtsLog.__call__method). A call is equivalent
to the method write. The log call can write to a file, the terminal, or both.

An instance of AtsLog named terminal is also available. This writes only to the standard out, not to any file.

4.1.8 times

This module contains utility functions and a class that deal with times.

4.1.9 atsut

This module contains utilities and definitions (such as the statuses) used widely in ATS. The basic error type AtsError
is also defined here. Many of these definitions are imported into the ats module proper. The class AttributeDict is
used in several places. It is a dictionary that also accepts attribute-style reading and writing.

4.1.10 executables

This small module is used to represent executables.

4.2 Programming Notes

Note that because of the complex interactions between priorities, dependents, filters, and waits, the AtsTest and
AtsTestGroup classes cannot be directly instantiated by a user. The purpose of making those classes visible at the ats
module level is to allow subclassing.

4.2.1 Forming Groups

Each test has a group attribute. These are instances of AtsTestGroup. Under normal circumstances each test gets a
new group instance with a distinct group number, and that test is the only method of that group. Doing this avoids a
considerable amount of logic compared to only having groups for tests created in the scope of a group() command.

When a group() call occurs, the newGroup class method of the AtsTest class is called. This halts the incrementing of
the group number and subsequent tests that are created share the group instance until either endgroup() is called and
calls the class method endGroup, or we reach the end of the source file, which triggers a call to endGroup.

Note that a group call can specify keyword / value pairs which bind more tightly than anything except an explicit pair
in a test statement. This allows the user for example to specify a base label, with the other members of the group getting
the same name with a #n numbering by default.

The group objects inherit from list and are basically a list of test objects with routines added to treat the list as a
collection.

52 Chapter 4. Notes

ATS Documentation, Release 5.5

4.2.2 Implementing Waits

Three AtsTest class methods combine to implement wait(): waitNewSource, called when a new file is begun; waitEnd-
Source, called at the end of a sourced file; and wait itself, called by the user.

The result is that each test object ends up with an attribute waitUntil which is a list of the tests this object must wait for.
Note that this attibute (on the test object, not the one on the class) must never be modified because it may be shared
with another test. You will note in the coding several instances of such lists being copied with a colon selector, in order
to avoid unwanted sharing.

Since many of these lists are long stretches of consecutive integers, it would be possible to save space by making them
instances of a special class that acts like a list. We have not yet done this and will until users decide they are happy
with the semantics we have currently implemented.

4.2.3 Dependents

Each test has a list of all of its direct and indirect dependents. These lists are created via the method addDependent
of AtsTest called by the testif function.

This method enforces several important policies, such as disabling tests that are children of tests that will never run or
which are expected to give a failing result, or which are to be batched.

The need to enforce these policies drives the decision to do canRun early. This means that by the time a dependent is
created, the status of its parent(s) has been fixed as to filtered, skipped, or batched. Note particularly the case where an
otherwise interactive test gets switched to batch because it cannot run on this interactive machine.

4.2.4 The Standard Machine

As tests are created, the canRun method of the interactive machine is called to determine if a test can run when the
machine is empty. Assuming a test makes it into the final interactive test list, all of which are in status CREATED, we
need to decide the order in which the tests are to be run.

This order is dynamic, as it depends on processor availablity. Other factors are the results of wait and group com-
mands.

There are four conditions that must be met to run a test:

1. The test has status CREATED.

2. Enough processors are available.

3. The directory where the test is to be executed is not “blocked”. The test would not be affected if its option
independent is True. Otherwise there must not be a non-independent test or group currently reserving that
directory (that is, another test is running there or a group was started there that isn’t finished yet).

4. Any parent tests are finished and have passed, and any tests this one must wait for because of wait() calls are
no longer waiting to run.

As tests complete, any failure may put descendents into SKIP status.

During the load of the interactive test list, the totalPriority of a test is calculated using the test’s list of children
and tests that must wait for it. The sum of the priorities of such subordinate tests becomes the totalPriority of the
test. The test list is then sorted on totalPriority.

To choose the next test to start, then, we take the first test in the list that satisfies the four conditions. (The routine
canRunNow tests this.)

4.2. Programming Notes 53

ATS Documentation, Release 5.5

As tests complete, we must eventually find a new test to run if there is one whose status is still CREATED, because
when no test is running any more, no directory is blocked and the tests have all been certified runnable on an empty
machine by canRun.

When we can’t find such a test, we’ re done!

54 Chapter 4. Notes

INDEX

Symbols
:pair:installation

setup.py, 44
--debug

command line options, 36
--keep, 32
--level

stick, level, 39
--verbose, 32
``#ATS:``

input, 17
input introspection, 28
output, 19

``atsr.py``
saveFileName, 26

~ operator, 34

A
adding test options

customized machines, 43
Andyroid, 5
ATS

command-line options, 24
execution, 23

ATS features, 1
AtsError, 45
AtsTest, 45

B
batch, 45

test option, 12, 34
BATCH_TYPE, 45
batchDic, 40
BATCHED

status, 41
built-in function
debug(), 36, 45
define(), 27
endgroup(), 29
filter(), 38
filterdefs(), 38
getOptions(), 38

getResults(), 26
glue(), 38
group(), 29
log(), 36
log.dedent(), 37
log.indent(), 37
log.reset(), 37
onCollected(), 27
onExit(), 9
onPrioritized(), 28
onSave(), 26
printResults(), 26
saveResults(), 26
showDefine(), 27
source(), 27
stick(), 38
tack(), 38
terminal(), 37
test(), 32
testif(), 33
undefine(), 27
unglue(), 38
unstick(), 38
untack(), 38
wait(), 30

C
capturing all output, 19
changing comment convention

introspection, 29
check

test option, 34
clas, 6, 40

interpolation, 14
test option, 12
test statement, 33

command line
custom, 19

command line options
--debug, 36

command-line options
ATS, 24

55

ATS Documentation, Release 5.5

list, 24
using --help, 24

configuration, 45
control-C, 32
CREATED

status, 41
custom
command line, 19
driver, 19

customization
onCollected input, 27
onPrioritized input, 28

customized machines, 43
adding test options, 43

customizing
StandardScheduler, 45

D
debug()
built-in function, 36, 45

define, 11
vocabulary, 15

define()
built-in function, 27

defining
functions, 15

dependents, 40
depends_on, 40
directory, 40

log, 6
test option, 12

directory blocking
groups, independent, 34

disposition of
output files, 32

driver
custom, 19
handyAndy, 21

E
echo, 37
elapsedTime(), 41
empty string
magic, 19

endgroup()
built-in function, 29

env
test option, 34

errname, 40
exécutable

test option, 34
example

group, 16
executable, 35, 40

test option, 12
execution

ATS, 23
exited, 40
EXPECTED

status, 41
expected

failure, 18
status, 18

expecting failure, 34

F
FAILED

status, 41
failure

expected, 18
file ``atsr.py``

postprocessing, 9
file sourced only once

input, 15
filter()

built-in function, 38
filterdefs()

built-in function, 38
FILTERED

status, 41
filters, 36, 47
function signatures, 1
functions

defining, 15
wrappers, 15

G
get

vocabulary, 15
getOptions()

built-in function, 38
getResults()

built-in function, 26
glue

test options, 10
glue()

built-in function, 38
glued

options, 37
group

example, 16
options, 29, 37

group()
built-in function, 29

groupNumber, 40
test attribute, 31

groups
independent directory blocking, 34

56 Index

ATS Documentation, Release 5.5

groupSerialNumber, 40

H
HALTED

status, 41
handyAndy
driver, 21

hideOutput
test option, 12, 34

I
in test or testif statement

options, 37
independent

directory blocking groups, 34
option, 29
test option, 12, 31, 34

independent (test option), 31
influences on

scheduling, 31
input
``#ATS:``, 17
customization, onCollected, 27
customization, onPrioritized, 28
file sourced only once, 15
introspection, ``#ATS:``, 28
magic, 17

input file names, 23
interactive
postprocessing, 9

interpolation
clas, 14
options, 14
script, 14

interrupts, 32
introspection, 17, 28

``#ATS:`` input, 28
changing comment convention, 29

INVALID
status, 41

K
keep
test option, 12, 32, 34

killing jobs, 32

L
label, 40

test option, 12, 34
level

--level stick, 39
option, 17
test option, 12

levels, 39
list

command-line options, 24
LLNL-specific features, 3
log, 18

directory, 6
log output, 36
log()
built-in function, 36

log.dedent()
built-in function, 37

log.indent()
built-in function, 37

log.reset()
built-in function, 37

logging, 37

M
MACHINE_TYPE, 43
magic
empty string, 19
input, 17
output, 19
test option, 12, 34

manager, 45
manipulating
test options, 37

message, 40

N
name, 39
test option, 34

notes, 40
test, 19

np, 40
test option, 12, 34

O
onCollected
input customization, 27

onCollected()
built-in function, 27

onExit()
built-in function, 9

onPrioritized
input customization, 28

onPrioritized()
built-in function, 28

onSave()
built-in function, 26

option
independent, 29
level, 17
report, 29

Index 57

ATS Documentation, Release 5.5

stick, 17
options, 40

glued, 37
group, 29, 37
in test or testif statement, 37
interpolation, 14
stuck, 37
tacked, 37
test, 12, 37
user-defined, 14
using filters with, 14

organization
test suite, 42

outname, 40
output, 40
``#ATS:``, 19
magic, 19

output files, 32
disposition of, 32
tests, 32

P
PASSED

status, 41
porting to new machine types, 43
post-processing file, 26
postprocessing, 42
file ``atsr.py``, 9
interactive, 9

preventing conflicts, 29
printing
vocabulary, 15

printResults()
built-in function, 26

priority
scheduling, 31
test option, 12, 31, 34

R
record

test option, 12, 34
report

option, 29
RUNNING
status, 32, 41

runOrder, 40
test attribute, 31

S
saveFileName
``atsr.py``, 26

saveResults()
built-in function, 26

scheduler

scheduling, 31
standard, 31

scheduling
influences on, 31
priority, 31
scheduler, 31
totalPriority, 31

script
interpolation, 14
test option, 12
test statement, 33

SELF, 28
serialNumber, 39
set(), 41
shortoutname, 40
showDefine()
built-in function, 27

SKIPPED
status, 41

source()
built-in function, 27

standard
scheduler, 31

StandardScheduler
customizing, 45

statement
wait, 29

status
BATCHED, 41
CREATED, 41
EXPECTED, 41
expected, 18
FAILED, 41
FILTERED, 41
HALTED, 41
INVALID, 41
PASSED, 41
RUNNING, 32, 41
SKIPPED, 41
TIMEDOUT, 41

stick
level --level, 39
option, 17
test options, 10

stick()
built-in function, 38

structuring
test suite, 17

stuck
options, 37

SYS_TYPE, 43
SYSTEMS
test option, 12, 34

58 Index

ATS Documentation, Release 5.5

T
tack()

built-in function, 38
tacked
options, 37

terminal output, 36
terminal()
built-in function, 37

test
notes, 19
options, 12, 37

test attribute
groupNumber, 31
runOrder, 31
totalPriority, 31

test command-line
test option, 12

test creation, 32
test option
batch, 12, 34
check, 34
clas, 12
directory, 12
env, 34
exécutable, 34
executable, 12
hideOutput, 12, 34
independent, 12, 31, 34
keep, 12, 32, 34
label, 12, 34
level, 12
magic, 12, 34
name, 34
np, 12, 34
priority, 12, 31, 34
record, 12, 34
script, 12
SYSTEMS, 12, 34
test command-line, 12
timelimit, 12, 34

test option overview, 34
test options, 34
glue, 10
manipulating, 37
stick, 10
user-defined, 14

test statement
clas, 33
script, 33

test statuses, 33, 41
test suite
organization, 42
structuring, 17

test()

built-in function, 32
test_number (built-in variable), 39
testEnvironment, 45
testif()
built-in function, 33

tests
output files, 32

tests with postprocessors, 29
TIMEDOUT
status, 41

timelimit, 40
test option, 12, 34

times, 45
totalPriority
scheduling, 31
test attribute, 31

triple
ats.log;atss.log;logs, 6

U
undefine
vocabulary, 15

undefine()
built-in function, 27

unglue()
built-in function, 38

unstick()
built-in function, 38

untack()
built-in function, 38

user-defined
options, 14
test options, 14

using --help
command-line options, 24

using filters with
options, 14

V
vocabulary, 36

define, 15
get, 15
printing, 15
undefine, 15

W
wait
statement, 29

wait()
built-in function, 30

waitUntil, 41
wrappers
functions, 15

Index 59

	Purpose and Features
	Download and Install
	History
	LLNL Notes
	About The Documentation

	The ATS Tutorial, Andyroid
	Introduction To Andyroid
	Running Andyroid under ATS

	ATS Execution Phases
	Phase 1: Sourcing
	Phase 2: Sorting
	Phase 3: Batch
	Phase 4: Execution
	Phase 5: Report
	Phase 6: Postprocessing
	Postprocessing Example

	Debugging Techniques
	Debugging Scheduling

	Structuring Your Test Suite
	Simple First Steps
	Understanding The Test Statement
	Understanding Test Options
	Resolving Option Values

	User-Defined Options
	Understanding Defines
	Defining functions
	Leveling
	Introspection
	Putting It All Together

	Advanced Topics
	Expecting Failure
	Postprocessing
	Using the Log
	Using Magic Output
	Output Magic Example
	Capturing All The Output
	A Note on Notes

	Making Custom Drivers
	The handyAndy Custom Driver

	Reference Material
	Test Selection and Execution
	ATS Execution and Command-line Options
	Unix or Mac
	Windows
	Command-line Options

	Basic Operations
	Retrying Failed Tests
	Results Facility

	Controlling Input
	File Sourcing
	Examining and prioritizing tests

	Using Introspection
	Changing the introspection convention

	Grouping
	Wait
	Example

	Executing Tests
	Scheduling
	Progress Reports
	Output Files
	Interrupting a Run

	Creating and Selecting Tests
	Creating Tests
	Expecting Failure

	Test Options
	Reserved option names
	Extra Arguments On The Executable

	Filters
	Additional ATS Vocabulary
	Debugging and logging

	Manipulating Test Options
	Customization
	Using Levels
	The Test Class
	Test Statuses

	Postprocessing
	Test Suite Strategies

	Porting and Custom Machines
	Adding Test Options Via Machine
	Customizing the Scheduler

	The ats Module
	Using A Batch Facility
	General Information
	Running Entirely In Batch

	More Examples
	Introspection
	Test Control
	Resources For Learning ATS
	Quick Recipes

	Notes
	Modules
	ats
	configuration
	management
	tests
	schedulers
	machines
	log
	times
	atsut
	executables

	Programming Notes
	Forming Groups
	Implementing Waits
	Dependents
	The Standard Machine

	Index

