

	The Automated Test System
	Purpose and Features
	Download and Install

	History

	LLNL Notes

	About The Documentation

	The ATS Tutorial, Andyroid
	Introduction To Andyroid
	Running Andyroid under ATS

	ATS Execution Phases
	Phase 1: Sourcing

	Phase 2: Sorting

	Phase 3: Batch

	Phase 4: Execution

	Phase 5: Report

	Phase 6: Postprocessing

	Debugging Techniques

	Debugging Scheduling

	Structuring Your Test Suite
	Simple First Steps

	Understanding The Test Statement

	User-Defined Options

	Understanding Defines

	Defining functions

	Leveling

	Advanced Topics
	Expecting Failure

	Postprocessing

	Using the Log

	Using Magic Output

	Making Custom Drivers

	Reference Material
	Test Selection and Execution
	ATS Execution and Command-line Options

	Basic Operations

	Controlling Input
	File Sourcing

	Using Introspection

	Grouping

	Wait

	Executing Tests
	Scheduling

	Progress Reports

	Output Files

	Interrupting a Run

	Creating and Selecting Tests
	Creating Tests

	Test Options

	Filters

	Additional ATS Vocabulary

	Manipulating Test Options

	Customization

	Using Levels

	The Test Class

	Postprocessing

	Test Suite Strategies

	Porting and Custom Machines
	Adding Test Options Via Machine

	Customizing the Scheduler

	The ats Module

	Using A Batch Facility
	General Information

	Running Entirely In Batch

	More Examples
	Introspection

	Test Control

	Resources For Learning ATS

	Quick Recipes

	Notes
	Modules
	ats

	configuration

	management

	tests

	schedulers

	machines

	log

	times

	atsut

	executables

	Programming Notes
	Forming Groups

	Implementing Waits

	Dependents

	The Standard Machine

The Automated Test System

Purpose and Features

The Automated Testing System (ATS) is an open-source, Python-based tool for
automating the running of tests of an application. ATS can test any program
that can signal success or failure via its exit status.

ATS is distributed, introspective, and scalable.

	It is distributed in two senses. First, there is no central database
of tests to run. Tests may be spread over many directories and usually
adding a test in a subdirectory is entirely a local operation.

	Introspective means that a test can be runnable by someone who is not an
expert, yet runnable with different arguments by someone who is. An
application test may contain within itself, in comments, directions for how to
run itself in one or more ways. An expert may run these tests normally using
his application; but when ATS runs it, it runs the application according to
the special comments within the input.

	Depending on the available resources, the execution of the tests can be done
over many processors and hosts, in parallel. Distributed execution and
test specification helps ATS stay scalable.

Other features of ATS include:

	A test may depend on another test, and will not be executed
unless their parent test succeeds.

	Tests may be filtered out (that is, not executed) in many ways.
These may include number of processors, time limit, platform, or other
user-defined criteria.

	A level may be given to each test, and used to stratify a test suite into
subsets of increasing thoroughness.

	ATS is extensible.
The ats driver script does almost nothing except import the
ats module and call the ats.manager.main() method. It may suit your
purposes to make a different driver that does things before or after this
invocation. The ats script uses the assets of the module ats
to provide a command line interface-type testing system. Other
interfaces, such as a GUI interface, are possible.

	ATS makes it easy in particular to postprocess the results of the testing by
registering routines to be executed after the tests have completed, but before
exiting.

	A facility is provided to make it easy to port ATS to new machines
such as parallel processors and multi-noded distributed machines, or to take
advantage of multiple cores. The ‘stock’ ATS will run up to two tests at
once, each of them standard serial jobs (np = 1 in what follows).

While ATS input can be written using the full power of Python, the basic
operations require only a few statements written in a special vocabulary that
is not be hard to learn. For example:

test(executable="/my/path/to/my/code",
 clas="-input mydeck delta=3",
 np=3)

executes the given executable with the given command-line arguments (clas),
launching the job is parallel on 3 processors.

Note

A note on function signatures
While this document assumes you can learn the basics of Python on your own,
function signatures require careful understanding. In Python, the definition
of a function parameter can have one or two asterisks in front of a name.

	When calling such a function, in the place of a parameter with one asterisk
in front of it, you can give zero or more comma-separated values
as a value, which the function will receive as a list.

	When a parameter name has two asterisks in front of it in the function
definition, you can give zero or more comma-separated keyword = value pairs
when you call it, which the function will receive as a dictionary.

For example, the ATS source function has the signature:

source(*paths, **vocabulary)

which means any of the following are legitimate calls to it:

source('foo.py')
source('foo.py', 'goo.py')
source('foo.py', physics="on", music = "off")
source(physics="on", music = "off")
source()

As it happens, the last of these doesn’t do anything, but it is a legitimate
call.

Note

All of the paths arguments must come before the first of the
vocabulary arguments.

Download and Install

Installation of ATS is easy. Unpack the distribution and in the top-level
directory execute:

python setup.py install

Public releases are at http://code.google.com/p/ats

The README.txt file contains installation instructions. ATS has been tested with
Python 2.6 or later, available at http://python.org.

ATS should translate to Python 3 by using the 2to3 utility but this has not yet been tried.

ATS should work, or be made to work, on any system which can run Python via
a command window. In particular it works out of the box on any Linux or Mac
system. ATS works on Windows but experience there is limited.

History

ATS was written by Paul F. Dubois at Lawrence Livermore National Laboratory,
(LLNL) in about 2003. Although an open-source release was made, the software
was highly oriented to the LLNL computer systems and one particular simulation,
ATS has been in continuous use since then.

A revision in 2010-11 has compartmentalized the LLNL-specific system details,
and we have added new features to make the software more generally applicable
and more easily portable.

The support team at LLNL includes Nu Ai Tang, T. J. Alumbaugh, and Ines Heinz.
You can contact the author at dubois1@llnl.gov. For help with the LLNL
features contact tang10@llnl.gov.

ATS was written to test scientific simulations, although it can be used for
any program that can be run with a command-line, does not require interaction,
and which can signal its own success or failure via its exit status (or be
executed via a shell program with those properties).

In general scientific programs do not produce predictable printed output, and so
comparison of output files, so common in the testing literature, is not normally
useful.They also are generally long-running and resource-consuming; hence ATS
emphasises filtering, parallel execution, and prioritization under user control.
Provision for supporting batch execution is also provided.

LLNL Notes

The LC distribution includes an LC directory containing definitions for the
local machines and the batch system. To make use of the features of LC machines
you will need to set either SYS_TYPE or MACHINE_TYPE. To install the LC machines, run:

python setup.py install

in the LC directory after you have done so in the main ATS directory.

For help join the mailing list ats@lists.llnl.gov.

About The Documentation

This document is licensed under the terms of the LICENSE.txt file
in the ATS distribution.

This documentation is written in reStructuredText, the standard language
used by the Python documentation project. You should find the source,
available in the distribution, readable even without rendering. It can be if
desired rendered into plain text files, web pages, PDF files, and other
formats using the tools of the Sphinx project. The source files
are located in the source subdirectory of the docs directory. The
Makefile in the docs directory will render the documents into
the build subdirectory if appropriate parts of Sphinx have been
installed.

If you install setuptools into your Python, you can get Sphinx with:

easy_install -U Sphinx

The ATS Tutorial, Andyroid

Introduction To Andyroid

We have seen a brief overview of ATS and its rationale. This part of the
document discusses an extended example and some hints about how to use ATS.
It is followed by a reference section. Few adventurers survive the reference
section; take an easy trip with this tutorial before venturing into that jungle.

The sources you need to follow along interactively are in the
Examples/Andyroid subdirectory of the ATS distribution. However, you
can also just read along.

The premise of this tutorial is that we have a program called andyroid; it
has a post-processor named andyroidPoster that runs using the output file of
andyroid as input.

These two executables are located in subdirectory andyroid. To avoid having
to compile anything for this example, these are in fact scripts, so that
to execute andyroid is really accomplished by executing:

python andyroid/andyroid.py

but you can just imagine that andyroid is a compiled program that has been
installed in that subdirectory. You can see the options andyroid has by
executing python andyroid/andyroid.py --help.

	-h, --help

	show this help message and exit

	-i FILE, --input=FILE

	input file name

	-o FILE, --output=FILE

	output file name

	--delta

	Add delta?

	--alpha=ALPHA

	A vital parameter

From here on out we will assume andyroid is an alias for
python andyroid/andyroid.py so that we don’t add to the confusion with the
extra text that would not be present for a real program. Just pretend
andyroid is a compiled program.

Running Andyroid under ATS

Let’s suppose that we normally test our program andyroid by using this
command:

andyroid -i test1.in -o test1.out

How do we get ATS to execute this test for us? The simplest way is to make
a file simpleTestSuite.ats that contains:

import os
this is the system-independent way to say "python andyroid/andyroid.py"
andyroid =sys.executable + ' ' + os.path.join("andyroid", "andyroid.py")

test(executable = andyroid,
 clas = '-i test1.in -o test1.out', label= 'test1')

(clas stands for “Command Line ArgumentS”). Then execute:

ats simpleTestSuite

Note: this is not the recommended strategy, but there is a lot to learn
by starting simply. ATS has lots of command-line options as detailed in
the reference part of this document, but we don’t need any yet.

Go ahead and try it. You’ll notice some interesting things here.

	The input file simpleTestSuite was found even though we didn’t put on
the .ats extension. ATS tries the name, then the name with .ats added,
and finally the name with .py added.

	We constructed the name of the executable using sys.executable so that
it would use the same Python that ats is being run with. In general,
ATS tests the executable to be sure it exists and does not rely on
your path to find it, so you must be precise. This is to avoid having
all your tests pass when in fact you didn’t execute the program you
intended to test.

	label is a name for this test. A test has both a unique serial number,
and a unique label. (If the label isn’t unique ATS will make it unique
after all the tests have been collected from your input file(s).)

	The output from the program we test (and separately, its standard error),
and the output from ats itself, are put in a single directory. This
directory has a name that contains the kind of computer we’re running on,
and the time. The directory has the extension .logs.

The output files for a given test contain the test’s serial number,
a simplified form of the label, and the time. That doesn’t mean all
the output from the test goes there; if the test creates files it creates
them in the directory where ATS is running them, which is by default the
directory of the “sourced” file that specified the test. That doesn’t have to
be so, as explained in the reference section entry for the
test function.

So, when you ran simpleTestSuite, andyroid created
a something.logs directory, containing ats.log. Unless the test
failed, the standard output and standard error (which were in that same
directory) have been deleted.

To make ATS keep the output we can add an option to the test command,
keep = True. Or, we can run ATS with a --keep option, which will
keep the output of any test that doesn’t have keep = False as an option.

You’ll also notice the log has full information on which tests passed or failed,
and has various summaries and the list of what tests were started in what order.
Additional information on scheduling is available in atss.log, especially
when using the --verbose or --debug options.

Also in the log directory after ATS has finished execution is a file named “atsr.py”,
where the “r” stands for “results”. This file can be used in postprocessing; see
Results Facility for details.

ATS Execution Phases

ATS works in six phases.

	Read the files on the command line.

	Examine the collection of tests, make sure every test has a distinct label,
and identify batch, interactive, and ineligible jobs (for example, one
that needs more processors than are available).

	Dispatch any batch jobs that have been specified to the batch system.
If there is no batch system, such jobs are usually skipped, but this
can be overridden by the ‘–allInteractive’ option.

	Run the tests.

	Report the results

	Run any postprocessors the user has defined.

Here are the details.

Phase 1: Sourcing

The first phase is to read the files you specify on the command line in the
order you gave them. This is called sourcing them, because it is equivalent
to using ATS’s source command.

A file being sourced is written in Python using some already built-in features,
as we discuss later. In simpleTestSuite, we are able to refer to a
function called test, which is already defined for us.

A test is created for each test or testif statement that is executed.
However, the ATS statements such as test can be mixed with arbitrary
Python statements.

The test or testif statements return a value, a test object.
This object contains all the information about the test; its attributes
are documented in the reference manual.

Warning

A test is not executed when the test function is executed.

The input language creates the illusion that the test function is causing
the test itself to be executed. And it is … eventually, but not now.
The test statement creates a test object and puts it in a big list of
test objects, but it doesn’t execute any tests until it is entirely
done sourcing files.

Consequently, you may not test the truth value of a test object:

if test(...): # ERROR CANNOT DO THIS
 test(...)

t = test(...)
if t: ... # NOR THIS

This coding is disallowed because it looks like it is making one test
depend upon another, but it isn’t. The tests are not executed at this
stage but rather later.

To make one test depend on another’s success, we do this:

t = test(...)
testif(t, ...)

As the tests are collected, the filters that have been defined so far are
used to see if the test should be attempted or not. Besides any user-defined
filters there are built-in filters on the number of processors, np, and the
level. The level is simply an easier-to-use filter that lets us execute
just a portion of a test suite.

Two more functions, group and endgroup, can be used to group together
a set of tests that are to be considered as a unit for reporting success or failure,
and optionally for protecting one or more directories from interference from other tests.

The wait function can be used to divide source files into portions, so that
the tests defined in that source file, after a wait() call, execute only when the
tests declared above it are completed.

All these features are described in more detail in the reference material
chapter Controlling Input.

In the log, the end of the input phase is marked with a message that says,
“Input complete.”

Phase 2: Sorting

The tests are examined to determine these things:

	Is the test to be executed interactively or in a batch system?

	Does the test depend on another (via a testif statement) so that
its execution must follow that of its parent (and be cancelled if the
parent fails?).

	Is the test a member of a group, or subject to a wait statement?

	Are there sufficient CPU resources to run the test?

From all this information, the list of tests that each test must wait for
is calculated, and a priority is assigned.

Phase 3: Batch

Any tests that are scheduled for batch are sent off to be handled by the
batch system. The details of how that is done and how you find out what
happened depends on the particular batch system.

Phase 4: Execution

ATS must decide which tests to start given the available resources. To that
end, each test has a priority. We can assign that priority (an integer) in the
test statement itself, but if we do not, a priority is calculated that reflects
the value of np (the number of processors the test requires) in the test and the
priorities of any tests that must wait for this one to finish.

As a result, parent tests tend to be executed earlier so that they do not
become a bottleneck. But, depending on the available resources, lower-priority
jobs may be used to keep the machine “full”.

You can see from the logs (especially atss.log``) which tests were started. If you see
that a test ends up executing for a long time after all the others are finished, you can
give it a higher priority. If you aren’t getting the behavior you expect,
see the reference chapters for further details, especially
directory blocking.

After test execution is completed, a file named continue.ats is written into
the logs directory if any of the tests failed. After fixing the problem, you can
use continue.ats as an additional input file to another ats run. This allows
you to fix as many problems as possible before attempting a full test suite
again.

Phase 5: Report

Reports are made about the tests, followed by summaries. Some tests can
be made to report on the terminal only if they fail, using the record or group
options. These reports are made to the log. Information about tests that finished can be
seen immediately by using the --verbose command-line option.

Phase 6: Postprocessing

Any functions registered by the user for post-processing are executed.

	
onExit(f)

	onExit(f) can be called with a the name of a function that
takes one argument, the ATS manager object. At the end of the ATS run this
function will be called. The function f can do whatever it likes.

Multiple functions can be registered and they will be called in the order in
which they were registered. Possible applications are printing reports,
making graphs, etc.

Note

The master testlist is manager.testlist.

A file atsr.py is written into the log directory and can be used for
postprocessing after ATS has finished. Using this facility, you can compare
runs or analyze previous runs.
See Results Facility in the reference section.

Postprocessing Example

Here we add coding to our ATS input file to print out information for
those tests that were filtered out:

def showFiltered (manager):
 filtered = [t in manager.testlist if t.status is FILTERED]
 log("Detailed list of filtered tests.")
 log.indent()
 for t in filtered:
 log(t.serialNumber, t.name, t.note)
 log.dedent()
onExit(showFiltered)

It would also work to put the showFiltered function in a file showf.py, run:

python -i <logdirectory>/atsr.py showf.py

>>> showFiltered(state)

The file atsr.py defines a variable state that contains information equivalent to the
manager object. Using the -i flag to Python, you can interactively examine the results
of the ATS run.

Debugging Techniques

	
level = debug(ivalue = None)

	
ivalue is an integer, or omitted.

	

With no arguments, debug returns the current debug level; with an argument
it sets the level.:

if debug():
 test(....)
old = debug() #save current value
debug(1)
... # debug is true in this section
debug(old) # restore previous value

So you can have various levels of debugging in your own coding:

myDebugLevel = 2
dsave = debug() # save the current value
debug(myDebugLevel)
if debug():
 do some stuff...
if debug() >= 2:
 ... do some more stuff...
debug(dsave) # restore original value

Note

The --debug command-line option is equivalent to a debug(1) call at
the start of your input.

Just remember you can’t do an if on a test object, and it is
rather pointless to do something right after a test statement because the test
won’t run until the input is all finished.

logDefinition(name1, ... , echo=True, logging=True)

can be used to log the named vocabulary words , or with no words,
all the names.

Debugging Scheduling

If you run in debug or verbose mode, you will get a lot of information about
what affected the job schedule by examining the atss.log file. Entries
appear showing whether a job that could have executed has been blocked because
it is waiting for directory blocking (B), waits or dependencies (W), or for
adequate numbers of processors (C for “CPUs”).

Structuring Your Test Suite

It is rare that a test suite of any size becomes an all-or-nothing affair. The
more tests there are, the more the need to run selected sets for selected
purposes. However, having the same test specifications repeated in a variety
of input files for ATS is an invitation to maintenance headaches.

Simple First Steps

We could do the entire test suite by making simpleTestSuite larger,
listing one test after another in a single file. As we will see later,
various filters and level indicators can be used to make it possible to
execute selected subsets of the test list.

For example (inline.ats):

import os, sys
codeDir = os.path.abspath(os.path.join(os.getcwd(), 'andyroid'))
andyroid = '%s %s/andyroid.py' % (sys.executable, codeDir)
andyroidPoster = '%s %s/andyroidPoster.py' % (sys.executable, codeDir)
stick(clas="-i %(inputFile)s -o %(outputFile)s %(opts)s")
stick(opts='')

glue(level=10)
test(executable=andyroid, inputFile='test1.in', outputFile="test1.out",
 label="test1")

glue(level=20)
t = test(executable=andyroid, inputFile='test1.in', outputFile="test1d.out",
 opts="--delta", label="test1d")
testif(t, clas = 'test1d.out', executable=andyroidPoster, label='test1dpost',
 keep=1)

However, in our experience a centralized test file is not a good idea except
on a small project. If you have several developers who work in a distributed
source tree, it is better to have the tests near where the developers work,
so that they can add new tests and don’t have to fight over a single file
containing a master test list. Instead the master file, or a few files
for different purposes, should contain mostly source statements to
source the master files of various subdirectories; e.g.:

source('subdirectory1/area1.ats')
source('subdirectory2/area2.ats')
source('subdirectory3/area3.ats')

and so on down the tree until you get to files that actually specify tests
in different areas.

However, when you start to do this, you do lose one thing. Remember our
line that specified what “andyroid” meant? That would have to be repeated
all the way down unless we do something about it. That’s not so bad until
the day you want to run some alternate version of andyroid. The solution
is to define the symbol “andyroid” so that it will be known in any
subsequent “sourced” files:

andyroid = '/my/path/to/andyroid'
define(andyroid=andyroid)
source('subdirectory1/area1.ats')
...

We will see this in action later.

Understanding The Test Statement

In Python, functions often take arguments of the form name = value.
These are called keyword-value pairs.

The test function takes these arguments:

	Zero, one or two positional arguments, followed by

	An arbitrary number of keyword-value pairs. These keyword-value pairs are
collectively called the “options”.

The possible forms are:

test(script, clas, option1 = value1, ...)
test(script, option1 = value1, ...)
test(option1 = value1, ...)

The testif function is the same with an additional (required) first argument,
the value returned by a previous test or testif function.

Understanding Test Options

Some options have default values. Here is a list of the arguments and options
in approximate level of importance or likelyhood of use:

* script can be given by an option rather than as a positional
 argument, or omitted.

* clas can likewise be given as an option and in fact must be if
 script is omitted, or omitted.

* executable = 'path/to/executable' is the program to be tested.
 If not given, the executable is the one specified with the ``-e``
 (or ``--executable``) command-line option, which defaults to Python
 itself.

 Your executable may include options, such as '/path/to/executable -f',
 or may be given as a list of components, such as
 ['/path/to/executable', '-f']. If the path contains a space, you
 must use the list form to avoid ambiguity.

* np = 0 is the number of processors required. Zero means 1 processor
 but may differ in consequence from np = 1 on some machines.

* label should always be specified to help you understand which test
 is referred to in ATS's output. It defaults to the script name.

* name is calculated from the name of the executable, but you can
 set it explicitly. The full name of the test is "name (label)".

* batch = False; if set to True, the job is executed in batch if possible
 and otherwise not at all unless ``--allInteractive`` is used.

* level = 1 is the level of the test, which is subject to the built-in
 level filter controlled by the ``--level`` command-line option.

* priority is calculated for you if not given.

* independent = False; if set to True, the test can be executed when
 CPU resources are available. If False, the test will not be able to execute
 until no other test is running in that directory. See also the
 :ref:`group facility <group_statement>`.

* timelimit has a default value of 30m, or as set on the command line
 with ``--timelimit``. The test will be killed and given a timed-out
 status if it is not finished running after this much time.

* keep = 0; if set to 1 (or set to 1 by the ``--keep`` option), the output
 files are kept even for tests that passed. If set to 2, the standard
 error file is also kept.

* check = False; if True, a test that passes is listed as one whose
 output needs to be checked by hand.

* record = True; record can be set to False to omit summary reports of
 this test unless it fails. You might do this with tests that are
 simply post-processing followups to a test upon which they depend.

* hideOutput = False; if set to true, any captured output is not
 printed in the log. (See the discussion Using Magic Output).

* directory defaults to the directory in which script resides; or if
 script is not given, to the directory in which the file being
 sourced statement resides. ATS will execute ``executable`` in this
 directory.

* magic = "ATS:"; if an output line starts with this symbol, the
 rest of the line is stored in test.output. The newline at the
 end is stripped off.

* SYSTEMS if given is a list of machine names on which this test is to
 be executed. Otherwise the test will be executed if otherwise eligible.

Resolving Option Values

For each option keyword there is a final value determined as follows:

	Start with the default value, if any.

	Apply values that have been set using the glue function.

	Apply values that have been set using the tack function

	Apply values that have been set using the stick function.

	Apply values that have been set using the group function.

	Apply values in the test’s options.

This final value is used. The dictionary of final values is used for
interpolation into script and clas, and for filtering.

Here are the scopes of the various ways of setting values:

	Values set in a test statement apply only to that test.

	Values set with stick apply only to test statements that follow it
within the same file. A file sourced by this one does not see the stuck
value.

	Values set with tack apply until to all subsequent test statements until the file
being currently sourced is completed. If this file sources another, the
tacked value applies in it too.

	Values set with glue apply to all subsequent test statements until overwritten.

	Values set with group apply to all tests defined within the group. This scope
also ends at the end of a source file.

	Values set on the command line apply for the entire run.

User-Defined Options

You can add any keyword-value pairs you want to the test statements, and
set defaults for them with the glue, tack, or stick statements. Then
you can use them for filtering or for interpolation into clas and
script.

Interpolation of the options into clas and script is done by using Python’s
% operator. For example, if clas = “-in %(inputFile)s”, and we have an option
inputFile = ‘test1.in’, the result will be clas = “-in test1.in”.

The user can define options for the purpose of controlling which tests
get executed. For example, if you do this at the top of your input:

glue(threshold = 0.)

and in some tests you have a different value:

test(...)
test(..., threshold = 1., label = 'just me!')
stick(threshold=10.)
test(...)
test(...)

then you can execute ATS with a filter to screen out those tests where
threshold is outside of some range:

ats mytest -f 'threshold >=0.5 and threshold <=2.0'

This would execute only the second test above.

Default values can also be defined locally with glue, tack,
stick and group directives, and filtered with filter directives. Including a
small file with such values and filters might be an effective way to define a
suite:

ats mydefinitions mytest

where mydefinitions contains glue, tack, and filter specifications.

Pop quiz: in the preceding sentence, why isn’t stick mentioned?

Understanding Defines

When a file is sourced, the language in which it is parsed consists of
any Python statement or built-in function, plus a limited vocabulary that
includes functions like test, testif, glue, tack, stick,
and log. The user can manipulate this list for subsequent sourced files
using these functions:

	define(name=value) adds the name with the given value to the vocabulary.

	undefine(name) removes name from the vocabulary.

	logDefinition(name) prints the value of name in the vocabulary; with no
name given, it prints the entire vocabulary.

	get(name) retrieves the value associated with name.

If you source a file that adds to the vocabulary, it will not apply in the
rest of the file that did the sourcing. For example:

source('mydefs.ats') # in mydefs.ats, define(foo=value) is executed.
source('file2.ats') # foo will be defined while sourcing file2.ats.
test(executable=foo) # Error! foo not defined here

To remedy this we use the get function:

foo = get('foo')
test(executable=foo) # foo defined here now.

Here’s an important fact about sourcing: a file is never sourced twice.
If it has already been sourced, it is skipped. That means that it is
not expensive to do:

source('mydefs.ats')
foo = get('foo')

in any input files. It won’t matter which of them is executed first, they
will all get the definition for foo that they need.

Defining functions

Note that you can define anything to put it in the vocabulary, including
Python functions. For example, suppose we wish to define a function
that executes andyroid and its post-processor andyroidPoster and which has
an interface of our choosing. Here is an example (file andyroid/andyroid.ats):

import os, sys
here = os.getcwd()
codeDir = os.path.abspath(os.path.join(here))
defaultAndyroid = '%s %s/andyroid.py' % (sys.executable, codeDir)
defaultAndyroidPoster = '%s %s/andyroidPoster.py' % (sys.executable, codeDir)

andyroid = os.environ.get('andyroid', defaultAndyroid)
andyroidPoster = os.environ.get('andyroidPoster', defaultAndyroidPoster)

count = 0
def runAndPost(inputFile, outputFile=None, label=None,
 delta = False,
 alpha = None, **options):
 global count
 count += 1
 if outputFile is None:
 outputFile = 'andyroid%05d.out' % count
 if label is None:
 label = inputFile
 clas = "-i %s -o %s" % (inputFile, outputFile)

 if delta:
 clas += " --delta"

 if alpha is not None:
 clas += " --alpha %f" % alpha

Test the code
 t = test(clas=clas, executable=andyroid, label = label,
 name="Andyroid", **options)

Test the postprocessor
report = False means omit separate report for postprocessor if it passes.
 testif(t, clas=outputFile, executable=andyroidPoster, label=t.name,
 report=False, name="AndyroidPoster", keep = 1)
 return t

define(andyroid=runAndPost)

(We return the test t in case we later want to have access to it, such as
making another test depend on it by defining a similar runAndPostIf(t, ...)
function.)

Now we can define a new file testSuite.ats:

source('andyroid/andyroid.ats')
andyroid = get('andyroid')
andyroid('test1.in', label='test1')
andyroid('test1.in', label='test1d', delta=True)

This will result in ATS running andyroid and then, if successful, andyroidPoster,
with two different labels and values for delta.

We used the value of the argument delta to set the command line arguments,
but we also set it as a test option. Then, if we want to run only those
tests with --delta, we can do it with a filter:

ats -f 'delta' suite

We might also choose to modify this example to include group() and endgroup() at the
top and bottom of runAndPost; the group call could set options that we wanted in each
test statement, and we would save all the output in case of failure of any part of it.

Leveling

ATS has a built-in leveling filter. Using stick to set a value, you
can break up tests into levels and execute only those below a certain
value, or between certain values:

source('andyroid/andyroid.ats')
andyroid = get('andyroidTest')

stick(level=10)
andyroid('test1.in', label='test1')
andyroid('test1.in', label='test1d', delta=True)

stick(level=20)
andyroid('test2.in', label='test2')
andyroid('test2.in', label='big run', delta=True,
 level = 30)

executed with command-lines such as:

ats --level 10 suite
ats -f 'level >= 4 and level =< 12' suite

These two levels, 10 and 20, might correspond to daily and weekly tests
for example. We recommend leaving some room to change your mind.

Introspection

When a file is sourced, the normal action is to execute the contents of that
file using the ATS vocabulary. However, magic is possible! Before explaining
how to do the magic, let’s understand the motivation for it.

An expert on the some area of andyroid may have a test routine, say “testX.in”,
that he uses, running the program with some variety of test inputs. However,
another member of the team will in general not know how to do this. So
it would be nice if the expert had a good way to embed in the test the
knowledge of what parameters to use to run it, without interfering in
the ability of the expert to run it by hand in a different way.

Now, strictly speaking you don’t have a problem here. You can have
a separate test file, testX.ats,
and this file can have test lines for each test the expert believes should
be run, perhaps also giving them appropriate levels, time limits, etc.

However, that often leads to having this extra file for absolutely no reason
other than to make this information available to ATS. And so is born the
concept of “introspection”: ATS looks inside a file it is about to
source and discovers that it is both the input file to be tested and
the instructions on how to test it, the latter appearing to be comments.

For example, assuming andyroid uses a “#ATS:” at the start of the line
to denote magic comments, testX.in might look like this:

#ATS:andyroid(inputFile=SELF, label="testX easy")
#ATS:andyroid(inputFile=SELF, delta=True, label="testX hard")
... body of the testX file

This would cause source(“testX.in”) to actually create two tests, where
the word SELF will evaluate to “testX.in”. The file will not be further
sourced, so the language used in the rest of it need not be Python.

If you wish to source a file with a different magic commenting convention,
this is possible – see the User’s Manual explanation of the source function.

Putting It All Together

The example given here in file suite is expanded in file fancySuite.
There you can see use of many of the concepts discussed here and in the advanced
section below. Note that the file begins by sourcing that same andyroid.ats
file that we used before. It then starts the testing with Test/main.ats, which
in turn sources files in directories simple, delta, and psweep.

In directory simple there is a test that is going to fail. It has been
given an option “development=True”. A default value of False has been given
to the other tests by using a glue statement in main.ats. Since we used
glue and not stick, this value persists into the subdirectories.

In directory delta there are some tests that turn on the --delta option.

In directory psweep we see that in fact psweep.ats is the input file
for Andyroid, but introspection is used to execute it many times with
different values of alpha.

Advanced Topics

Modifying ATS itself should rarely be necessary. The techniques in this chapter
show how much you can do with customized drivers and machine specifications.

Expecting Failure

Applying the tilde (~) operator to a test marks it as a test that is expected to
FAIL. Thus:

~test(....)

will be considered to have passed only if it ends up with status FAILED. The
status will be changed to EXPECTED and a entry made in the t.notes list documenting
this fact. See the reference manual for further details.

Postprocessing

Postprocessing the results of the ATS run can be done using a custom
driver or using the onExit facility.

Using the Log

One of the defined vocabulary items is an object named log; it acts like
a function and prints its arguments into the log and / or on the terminal,
space separated and terminated by a newline. For example, if you put
this in your sourced file:

log('Entering test section', 'foo', echo=True)

then “Entering test section foo” will be printed to the log and to the
terminal. This may give you a good fuzzy feeling if you are unsure of
what tests are being initiated.

The echo value controls output to the terminal. Another flag, logging,
controls whether or not the output is stored in the log.

Using Magic Output

When a test writes something to its standard output that begins with
some magic prefix, ATS captures those lines and stores them in the
test object as a list (test.output). The lines have their final newline
removed. If the option hideOutput is True, such output is written in the log
when the test finishes. By default it is False.

The magic output prefix is set in the test’s option magic; the default value
is #ATS:.

Note

This differs from the magic argument to source;
they have the same default but otherwise are not connected. The source
magic controls the introspection process for input; the test magic option
controls the capture of part or all of the output from running the test.

Setting the magic output prefix to None prevents any output collection.

The list would be available to any post-processor using onExit or
a custom driver. You may wish to set --hideOutput if you are just
going to post-process.

Output Magic Example

If we define a test with a magic option of “shazam!”:

test1 = test(executable=something, ..., magic="shazam!")

Suppose the test runs and prints:

shazam!4.2 6.8

After the test exits, test1.output is ["4.2 6.8"].

Capturing All The Output

Any test with a magic option which is an empty string (formed
by using two consecutive single or double quotes) then all the output from
the program is captured and stored in the test’s output attribute.
You can then do something with it via postprocessing or view it in the log.

A Note on Notes

Each test also has an attribute notes, a list of strings. These notes are
currently used to note that certain things have happened and are used in the
summary of results. You can append strings to this attribute if you wish.

Making Custom Drivers

The main program ats is a very short script; stripped of some error
reporting it reads:

#!/env/bin/python [this line adjusted on installation]
import ats
ats.manager.main()

ats.manager is an object that controls the ats run. Before you
call main, you can do other things such as register onExit functions.
You can massage the arguments (sys.argv[1:]) and pass the resulting
string as main's argument. (Python’s shlex module can help
manipulate argument lists.).

After main returns, the master list of tests is ats.manager.testlist.
All the statuses are available as attributes in the ats module.

For example, this driver would add a list of tests that failed in some way
to a database:

#!/env/bin/python [make sure it points to ATS's python]
import ats
from ats import CREATED, INVALID, FAILED, TIMEDOUT, manager
manager.main()
failed = [CREATED, INVALID, FAILED, TIMEDOUT]
(open the database)
for test in manager.testlist:
 if test.status in failed:
 (write test.name and details to database)
(close the database)

The task of installing this script alongside the main ats script, and
adjusting the first line, can be handled with a separate setup.py script or by
editing setup.py to add another script before installing. Change this line
in setup.py:

scripts = [codename]

to read:

scripts = [codename, "your_script_name"]

If you need tighter control, instead of calling main you can call its
constituent parts:

from ats import manager
manager.init(clas) # note, string argument
 # omit clas = use command line
manager.firstBanner()
manager.core()
manager.postprocess()
manager.finalReport()
manager.saveResults()
self.finalBanner()

Here is what those pieces do:

	init processes the command line and the machine gets defined.
The function has 3 possible arguments: a command line, and two
call-back functions for adding and examining command-line options.

	firstBanner initializes the log – before this has been called,
using the ats.log object will just write to the terminal.
After this call, the manager vocabulary is “up”, so you can
safely call things like glue, define, test, etc.

	core does the “phases” of collection, sorting, and execution.

	postprocess calls the user’s onExit routines.

	finalReport writes the detailed report.

	saveResults creates the atsr.py` file.

	finalBanner writes ATS’ summaries and exit messages.

Please let the authors know of any needs for further refinement.

The handyAndy Custom Driver

Andyroid has a little custom driver handyAndy. This driver takes care of
the sourcing of andyroid.ats and does some postprocessing looking for
failures that did not have the the option development set to True; these
are true failures. If users used handyAndy instead of ats itself, the
source - get procedure could be left out of all the ATS input files.

Reference Material

Test Selection and Execution

Tests are defined in ATS input using two commands, test and its little
brother, testif. However, not every test that gets defined is necessarily
going to be executed. The user can define logical conditions (filters) that
a test must satisfy to be chosen for execution, and the hardware available may
cause others to be skipped.

In order to make it easier to structure suites of tests, there is an elaborate
set of facilities involving filters, command-line options, and arguments to
test statements, as well as facilities for grouping and ordering your test
executions.

ATS Execution and Command-line Options

In specifying the names of input files, you can give the filename or omit
the filename extension. ATS will attempt to find the file
using its name, then with a .ats extension, and then with a .py extension.

Unix or Mac

To start ATS on a Unix system or Mac, execute this line in a terminal
window:

ats [options] [input files]

Note that the --exec option is frequently used to define a default
executable, but any given test can specify any executable as the program to be
tested.

Before executing ATS, it may be desirable to have defined the environment
variables MACHINE_TYPE and / or SYS_TYPE; and there may be others for testing
particular executables. Please consult with the owner of your local ATS
installation, and the owners of any custom ATS drivers you may be using.

Windows

Execution on windows can be done in the same way from a command window, but
can be made more convenient by defining a .bat file, such as:

C:\python27\python c:\python27\ats $*

These instructions need improvement as the first Windows users determine
the right way to do this.

Command-line Options

What follows are the the most important command-line options available in any
ATS installation.

Note

The exact set of command-line options depends on the machine you are using
and / or upon any custom driver you are using for testing a particular
program. To see the complete list for a given ATS installation, enter
ats --help.

This will also show you abbreviations for some of the options.

	--allInteractive

	Run every test in interactive mode.

	--cutoff cutofftime

	This invokes a special mode in which no test is allowed to run longer
than cutofftime, regardless of its actual timelimit option.
Jobs that reach this threshold are treated as failures in the sense that
any jobs depending upon them are not run; but they are given status
HALTED rather than TIMEDOUT. The forms for giving the time are the
same as for --timelimit.

	--debug

	Debug mode; prints more information in the log and on the shell window.

	--exec EXEC

	Give the path to the code to be tested. The path is tilde- and
dollar-expanded.

This option sets the environment variable ATSROOT, if not already set,
to the directory in which the executable resides. Most of the time
this option is used, and the executable so named is referred to
in this documentation as the specified executable.

However, tests with different executables can also be specified, by using the
executable=’/path/to/my/code’ as one of the test options. The purpose of
ATSROOT is to allow you to specify related tools for your code that are
located in the same directory as the executable. In specifying a test, you
can use this variable in the script or executable using either $ATSROOT
or %(ATSROOT).

Note that you don’t have to have one main code to be tested.
You can specify a different executable for each test, or group of tests.

	--filter FILTER

	Add a filter; may be repeated. Be sure to use quotes if the filter contains
spaces and remember that the shell will remove one level of quotes.

	--glue FILTER

	Has the effect of executing glue(FILTER) before execution of the tests.
May be repeated. Be sure to use quotes if the filter contains spaces and
remember that the shell will remove one level of quotes.
The glue function is used to set persistent test option defaults.

	--help

	Show the list of options and exit. There may be more options than are
shown in this document, such as batch or node control options.

	--info

	Print information about ATS, such as version, path to the executable,
and some parameter values.

	--keep

	Keep the output files from the tests that succeed.
Normally the output from tests that fail, or which must be checked, is kept.

	--logs LOGDIR

	Sets the name of the log directory. The default log directory is
arch.time.logs, where arch will be an architecture-dependent name, and
time will be digits of the form yymmddhhmmss. All logs and the
continuation file are placed in this directory. The log itself is named
ats.log.

	--level LEVEL

	Set the maximum level of test to run. Level is simply a built-in easy-to-use
filter.

	--skip

	Skip actual execution of the tests, but show filtering results and missing
test files, and show additional details about the input.

	--nobatch

	Do not run any “batch” tests..

	--npMax value

	Value is an integer, the maximum number of tests to run at once (on a node,
if multinode machine). Some machines allow you to set this higher than
the actual number of nodes, at your own risk.

	--okInvalid

	Run tests even if there is an invalid test. Examples are tests specifying
missing scripts or executables.

	--oneFailure

	Stop if a test fails.

	--serial

	Run only one job at a time.

	--timelimit TIMELIMIT

	Set the default timelimit test option. TIMELIMIT may be given as an
integer number of seconds or a string specification such as ‘2m’, or
‘3h30m20s’. A similar notation can be used for filtering by time limit, such
as -f ‘timelimit < “30m”’.

	--verbose

	Verbose mode. Both starts and finishes of tests are noted on the terminal,
plus other reports. Test failures are reported regardless.

	--version

	Show program’s version number and exit.

Basic Operations

The goal of ATS is to execute a series of test problems. It does this by
reading input files written in the Python language, with some predefined ATS
functions added. In particular, ATS supplies a function named test. Each
execution of the test statement defines a particular program to execute,
including its command line and a variety of options used by ATS to know
how to run it or to decide not to run it.

After running the tests, the ats prints a summary of which tests have passed
(that is, returned with a normal exit status) and which have
failed.

The second basic statement is the source statement, which causes a
file to be read containing additional commands. An introspection
procedure, described below, is also available to allow scripts meant as
problem input to contain definitions of how they are to be run when run by
ATS.

Retrying Failed Tests

If any tests fail or are not completed, a “continuation” file is written and
a message issued in the summary section giving the name of the file.
The continuation file is named continue.ats and it is inside the log directory.

You can rerun the exact same ATS command, adding the path to the continuation
file as an extra command-line argument.

Note

You must run the exact same command with this added argument at
the end of the command line.

Doing this will redo those families of tests that had a failed member.
This process may be repeated until all tests pass. In your log, tests that
had passed before well be marked “Previously passed” and batch jobs will be
“skipped”. The continuation file is pretty self-explanatory and you can edit
it with thought.

Note that if a descendent of a test failed, the test will be rerun because the
error might have been in files produced by the parent test, even though it
appeared to pass.

The intention of this facility is to let you fix your code without having to
rerun all your tests. For correctness, you should rerun everything once you
believe you have corrected all errors.

Results Facility

Each run creates an atsr.py file in the log directory. This file, if
run under Python, creates one variable named “state”, which is an
object that is a dictionary whose values can be read and written using
either dictionary or attribute notation. This type is called an
AttributeDict.

The object state has attributes corresponding to the major features of
the manager object, including a machine and testlist, which is
a list of AttributeDicts, each encapsulating the major properties of
each test.

Two methods in the manager object control this facility, which may
be used by custom drivers.

	
onSave(saver)

	Registers a function saver(results, manager), which will be called
when the data for the state is collected. It may modify the
AttributeDict results in any way it likes, usually by adding to it.
Calling results.clear() would be a way of minimizing the use
of resources devoted to this file.

onSave is available in the test environment also, for use in input
files. Note that the call does not cause the save of the file at the
time it is executed.

Three other manager methods can be called from custom drivers.

	
getResults()

	Returns the AttributeDict containing the state. The manager’s
machine and, if set, batchmachine, are given a change to
contribute fields to the end result, and finally any onSave-registered
routines are called in the order they were registered.

	
saveResults(filename='atsr.py')

	Save the state to a file using given file name; if not absolute,
put it in the log directory.

	
printResults(file=sys.stdout)

	Do the actual job of writing the state file. Here file should be an open
file handle. You would only use this function if you wanted to add
something to the file other than the state variable.

Normally saveResults creates the file and asks printResults to
call getResults and print the returned state into the file, preceded
by a header that imports the symbols in the ats module so that the code
will execute correctly.

Interactive inspection of the resulting file is most easily accomplished
with an interactive Python session, such as:

cd <logdirectory>
python -i atsr.py
 print "Number of tests = ", len(state.testlist)
 print "Machine name", state.machine.name
 print "Number timed out", \
 len([t for t in state.testlist if t.status == TIMEDOUT])

Note that ATS statuses will compare equal if they compare to another
status or the name or the abbreviation. So in the last line above,
TIMEDOUT, “TIME”, or “TIMEDOUT” would all work.

To compare different files you can rename state as you read it:

d= {}
execfile("atsr.py", d)
state1 = d['state']

You can change the name of the file to be used by setting manager.saveResultsName
in your input file. If not an absolute path, the file will be created in the logs
directory.

Controlling Input

File Sourcing

	
source(*paths, **vocabulary)

	Process one or more paths as if each was the name of an
input file given on the command line. (This function is the same as
manager.source)

The current stuck options are saved upon entry, cleared before beginning
processing, and then restored on completion. See stick below
for further details.

Path names are expanded both for tilde and environment-variable
names using the dollar sign.

The vocabulary items can be any number of keyword = value pairs.

Vocabulary words are added to the environment in which input files are
compiled by Python. The scope of this environment is just within the input of
the paths given to this source command. To add a vocabulary value to all
subsequent source commands, use the define command, described next.

The vocabulary word introspection can be used to change the commenting
convention used for ATS’ introspection facility. Details are given below.

	
define(keyword=value, ...)

	adds one or more keywords to the vocabulary used by the source command to
parse input. This is the same function as manager.define.

	
undefine(keyword, ...)

	removes one or more keywords from the vocabulary used by the source command
to parse input. This is the same function as manager.undefine.

	
showDefine(*keywords, **options)

	logs the current definition of one or more keywords in the vocabulary used by
the source command. If no argument is given, all the definitions are shown.
This function is used to help debug your vocabulary setup. The options may
include echo and logging, and are passed on to the call to log. The defaults
are both True. This is the same function as manager.showDefine.

A file may be ‘sourced’ because it was given on the command line or
because a source function was executed with it as an argument. (Note: In
what follows it is is assumed that a line that starts #ATS: is a comment to
your application; however, it is possible to change the commenting convention to
suit your input convention, using the second argument to source.

Examining and prioritizing tests

After collection of the tests the user may wish to examine or alter the
tests before they are executed. This is done by registering one or more
routines to be called (in the order in which they were registered) by using
onCollected. See also onPrioritized, below.

	
onCollected(routine)

	

The routine registered is called when the input is complete. It is given the
manager object as its single argument. The routine thus has access to the
manager.testlist.

The routine may make use of the routine that ATS itself is about to use to
divide the tests into interactive and batch tests:

interactiveTests, batchTests = manager.sortTests()

You can effect what happens next by changing statuses (such as setting the
status to BATCH or FILTERED or CREATED (i.e., interactive)) or change
totalPriority (see below).

You also have a chance at this point to use each test’s directory attribute
to prepare the file system, or to build data structures for later use in a postprocessor.

Use this facility with caution. Do not attempt to change tests that would
not have executed at all into ones that will. If you change a label it must be unique when you are done. Do not alter serial or group numbers.

After the onCollected actions, the scheduler prioritizes the interactive
tests. The totalPriority attribute of each test is set to the sum of the
test’s own value plus the sum of the priorities of each test that must wait
for this one to complete. (Such conditions are created by dependencies or
wait or group commands.)

The user may wish to examine or alter the priorities of the tests
tests before they are executed. This is done by registering one or more
routines to be called (in the order in which they were registered) by using
onPrioritized.

	
onPrioritized(routine)

	

The routine should take a single argument, interactiveTests. The intent is for
the user to examine or alter the totalPriority attribute of a test.
Altering priority attributes will not work. Altering anything else about
the test is probably ill-advised.

In summary, there are two ways to change the totalPriority attribute:
in an onCollected routine, which will contribute the new value to its
predecessors, or in an onPrioritized routine, where you are setting the
final absolute value.

Using Introspection

When a file is sourced, ATS looks to see if the file contains any
lines that begin with the five characters #ATS:. If so, the set of
such lines with the leading #ATS: removed will be executed as Python
code. The remainder of the file will be ignored. This procedure is called
introspection.

Note that Python’s indentation rules apply, so there should not be any
spaces after the #ATS: except on lines that should be indented.

For example, continuation of lines is allowed in the normal Python
manner:

#ATS:test('myfile.py',
#ATS: 'my command line args',
#ATS: np = 4)

Picture the first five characters as defining the
left edge of the lines to be executed.

During this procedure, the symbol SELF will be defined to be the name
of the file being sourced. Thus a line such as:

#ATS:test(SELF, 'command line options', np=4, w=2)

will cause the file to be tested with the given command line, using
the options np = 4 and w = 2 as context for filtering.

A file may contain many such lines, in order to exercise the same test
with a variety of parameters. Also note that not all the #ATS: lines
need to be ATS commands; they can be any Python code. They can also
include log commands, source other files, etc.

Changing the introspection convention

If a value for the vocabulary word “introspection” is given, it should
be a python function which, when given a line, returns None or the value
of the line as introspection. The default is a function that returns None
unless the line begins with #ATS:, in which case it returns the line
less that prefix.

By prescribing your own value for introspection, you can allow the
introspection process to work on source files with a different commenting
convention than “#”.

In particular, to change the default function used for introspection, just use
define after you declare it. For example:

def asteriskinterpolation(line):
 "Any line that starts with *ATS: is magic"
 if line.startswith("*ATS:"):
 return line[5:]
 else:
 return None
define(interpolation=asteriskinterpolation)

Grouping

If you have a test that creates some files for postprocessing, you can group that
test with the related ones.

You begin with:

	
group(independent=False, report=False, **kw)

	

and after defining some tests, finish with:

	
endgroup()

	

A group is also ended by another group statement, or the end of the current input file.
The arguments to the group call become default options for each test defined
inside the group. They can be overridden by options in the test and testif
statements within the group.

Only the first test result will be included in the final reports unless some member of
the group fails, or you change the report argument to True. The output files
of the entire group will be kept if anything fails; otherwise the usual keep options
will prevail.

The independent test option determines if a test will block any other test (other than
ones in its group) that uses the same directory. By default, then, a group
will lock-out any non-independent test or group from running in the directory or
directories its tests use. This is not different than the default behavior of ATS,
but is a convenience for making sure that the members of the group will not be
interleaved with other, non-independent tests that use the same directories, if you
have glued or tacked or stuck independent to be be True.

These two arguments are used as test options for all tests in the group, but for any
particular test can be overridden by an explicit option in the test statement itself.

Note that grouping does not make each test depend on the preceding tests in the group.
Two members of the group may execute together. It also does not make the failure of
one test skip another. To achieve dependency, use the ‘testif’ facility.

Wait

It is certainly possible to make two tests that appear to be independent but which
cannot in fact run simultaneously. ATS prevents many cases of this due to its reluctance
to run two tests in the same directory at the same time. If that fails to solve the
problem, and the group or the testif statements are not sufficient, you can try
the wait statement:

	
wait()

	All the tests defined so far in this source file will be finished
before proceeding to any tests defined later in this source file. Tests
defined in other files that are sourced after the ‘wait’ must also wait
for all the tests before the wait in this source file.

wait() may be a useful way to express massive dependencies without using
excessive testif calls. However, if used excessively, wait may cripple
ATS’s ability to run tests simultaneously.

You can debug your wait structure with this command:

ats yoursource --skip

This will show a list at the end of the log file, under “ATS RESULTS”,
showing the serial numbers being waited for by each test.

When all tests are completed, ATS issues a final report and runs any
postprocessors that have been registered using the onExit facility described
later.

Example

Suppose we have this test file “waitforit.ats”:

glue(executable = "/bin/ls")
test(label='first')
test(label='second')
wait()
test(label='third')

Then the third test will not execute until the first two are done – but this says
nothing about the order in which the first two will execute.

Suppose now we add a source of another file, so we have:

glue(executable = "/bin/ls")
test(label='first') #1
test(label='second') #2
wait()
source('waitfor1.ats')
test(label='third') #6

with the file being sourced containing:

test(label='waitfor1 first') #3
test(label='waitfor1 second') #4
wait()
test(label='waitfor1 third') #5

We have thus defined six tests in all. The output of the debugging process is:

Interactive tests:
#1 INIT ls(first) ready
 []
#2 INIT ls(second) ready
 []
#3 INIT ls(waitfor1 first) ready
 [1, 2]
#4 INIT ls(waitfor1 second) ready
 [1, 2]
#5 INIT ls(waitfor1 third) ready
 [1, 2, 3, 4]
#6 INIT ls(third) ready
 [1, 2]

The parts in square brackets are lists of the tests this one must wait for.
(The list will include any tests of which this one is a dependent.)
So we see for example that #6, the last test in the main file, waits for the
first two tests, because a wait() occurs after #2, but it is
not affected by the wait statement in the sourced file. In that file
the first two tests are waiting for the first two, and the third waits for
the first four.

Executing Tests

ATS attempts to execute as many tests as it can at the same time in order to keep
the computational resources it has been given busy, subject to respecting the
test options priority and independent, and the group and wait statements.
The following sections describe this process.

Scheduling

After the ATS has read all the input and knows what tests are to be run,
it examines the collection and combines the information generated by the group,
and wait commands with the test dependencies to figure out which tests must
execute before others. It can then combine the priorities of tests to determine a
preferred order of execution – which however will be subject to processor availability.

This work is done by a scheduler object. A standard scheduler is provided, and is an
attribute on the machine object. A user could potentially modify it by inheritance from
its defining class, schedulers.StandardScheduler.

Each test has a priority. By default the scheduling priority (totalPriority)
is the number of processors required by the test plus the priorities of any tests which
cannot execute until this one is finished. In this way those tests with a lot of dependents
are started early.

A test may specifiy its priority as an option “priority=n” where n is a nonzero integer.
A test whose priority is zero or less will not be run. Thus, a long-running
1-processor job without dependents might profit from being given a priority,
say 3, so that it starts earlier. Note that an np = 0 job requires 1 processor.

As tests are selected to be started, the highest-priority job that will fit on
an available machine is chosen. You can examine the tests in postprocessing if you want
to understand what influenced the scheduling:

	Test option priority,

	Test attribute totalPriority,

	Test attribute group,

	Test option independent (described below)

	Test attribute runOrder, an integer indicating the order of test launch.

Note

Important: by default two tests will not be run in the same directory at the same time.

This is a modestly conservative scheme to avoid common resource conflicts when testing
one file with different parameters.

If you know a test does not have such a problem, you can give it the option
independent = True. Note that the group command makes the default value of
independent False for all members of the group, overriding anything except an actual
option in the test statement. Thus if you do not want this behavior for the group
you must use independent = True as an argument in your group command.

The standard scheduler sorts the groups by the highest priority test in the group. In effect,
every member of a group behaves as if it has the priority of the highest-priority test in the
group. This ensures a large prejudice towards running members of a group once it has started,
until they are all complete.

Progress Reports

When a test starts this fact is shown on the terminal output. You can use the command
option --verbose to cause test completions and other additional events to be reported
as well. All the information is always in the log. Additional output is generated by
the --debug option.

Every minute ATS issues a report on its progress to the terminal only.

Output Files

The standard output and standard error of a test are written into
files in the directory where the logs are written. These files are (usually)
removed when the test concludes successfully; for a group, this occurs when all
members of the group have succeeded.

The name and label of the test script or executable, along with the test’s
serial number, are used to create the file names.

The –keep option prevents the removal of these output files even when
the tests are successful. They are also kept if the test has the option
keep=True or check=True.

See also

Postprocessors set using the onExit facility can access the magic output
of a test as test.outputats.

Interrupting a Run

A control-C interrupt will terminate the program and all the tests it
is running. Any test started but still not finished will be reported
in RUNNING status.

Creating and Selecting Tests

Creating Tests

	
test(*args, **options)

	This notation means that you can give positional, unnamed arguments,
followed by keyword=value arguments.

	If you give just one positional argument, it is called “script”.

	If you give two, they are “script” and “clas”.

	If you do not give one or both positionally, they are given in the
options, with their default values being blank strings.

It is an error to give more than two positional arguments.

Positional arguments are allowed for backwards compatibility – it is
preferable to name everything.

In the test function call:

	script is a file name, which may be be relative to the directory containing
the input file or absolute. Note that ATSROOT can be used in such names to
designate either a preset environment value or the directory of the specified
executable. The script if given will be used as the first argument on
the test’s command line, and will supply a default name for the test.

	clas is a string giving the command-line arguments to be passed
to the execution. Before doing so, python string interpolation is used
with the options dictionary. This means, for example, that:

test(clas = "-in %(input)s -parallelism %d", np=4, input='foo')

will result in:

clas = "-in foo -parallelism 4"

You might want to do this if, for example, this expression for clas was
constant over many tests except for these variations of input and np. Then
you could stick or glue this value for clas and not have to repeat it over
and over.

Options can be any keyword = value pairs declaring the properties
of this particular test; these are used in filtering and also
serve as documentation for the test’s properties.

test returns an test object whose attribute ‘status’ is one of the
following attributes of the ats module: CREATED, RUNNING, HALTED,
PASSED, FAILED, TIMED, FILTERED, SKIPPED, BATCHED, INVALID.

Warning

Testing the truth value of a test object, such as using it in an
if clause, causes the test to be marked FAILED. See testif below.

The test object will execute in the directory test.directory. This value can
be set in the test options, but if it is not (which is usually the case)
it is set to the directory in which the script resides, if the script is given.
Otherwise it is set to the directory in which the test statement was read.

Note that if executable is 1, the script isn’t really a script, so directory
is set to the directory in which the test statement was read.

	
testif(othertest, *args, **options)

	This is the same as the test statement except that this test will only be
run if othertest is eligible to run, has been run, and has been
successful.

For example:

t = test('foo.py', 'dumpat=25')
testif(t, 'foo.py', 'restartat=25', label='restart test')

Explanation: This works because the test call returned a test
object, t.

Expecting Failure

Sometimes you want to make sure a test will fail. To do this use the tilde (~)
operator on the test:

~test(....)

The test will count as passed if its status ends up FAILED.

You can also set the expectedResult attribute of the test directly to something
other than PASSED:

t = test(....)
t.expectedResult = TIMEDOUT

It is pointless to have a dependent of a test that is not expected to PASS.
It will be SKIPPED.

Test Options

Each test can define arbitrary keyword = value pairs. With the exception
of a few special options described below, the keyword names are arbitrary.
Most options do not affect the running of the test, just the decision
about whether or not to run it.

There are five lifetimes of option specification:

	defaults (often with command-line options to change the value),

	permanent (see glue and unglue),

	current and descendent files (see tack and untack)

	per sourced file (see stick and unstick), and

	per test (using the options portion of the test command).

Reserved option names

While you are free to use any desired scheme for options and filters,
do not use the following names except for the purposes described.
These are listed roughly in the order of their frequency of use by the
end user.

	label
	label can be set to a string that will be appended to
the name of the test to identify the test more fully. Thus, two
different runs of the same script can be distinguished.
label by default is the test’s serial number, the number that distinguishes
the order in which the test was defined. labels are adjusted after all
tests have been read to add distinguishing characters, so that no two tests
have the same label.

	name
	This is the test name, as is printed out in the summary. If a script
is given, it is that file name less the extension. Otherwise it defaults
to the base name of the executable.

	np
	The option ‘np’ is reserved for specifying the number of
processors to be used to run the program if the machine is
a parallel processor. np = 0, the default, means a scalar
run. np = 1 will be treated as a serial run on serial computers.
np can be used in filters, e.g. np < 32.

	executable
	This option sets the path to the program to be run for this test. The
default value of this option is usually set by the –exec
command line option.

The executable program will be
considered to have passed or failed depending on its exit status.

The executable may contain options after the path; it may also be given
as a list of strings, the first component being the path and the rest
options. If the path contains an internal space, you must use the
list form.

Deprecated since version If: executable is 1, the first positional argument to the
test function is the name of the executable program. It is preferable
to use executable = /path/to/executable.

	batch
	This option is used to run a test in batch by setting it
equal to 1 or True. Note that the filter batch (which you can set with
the –filter batch command-line option) will restrict
submissions to only batch jobs and the remaining non-batch jobs
are skipped.

	check
	If check is not zero, this test is marked to be
checked by hand rather than marked as passed, if it finishes
normally. Such jobs are reported separately in the summary.

	keep
	If true, the test’s output files are kept even if it passed.

	independent
	If independent is True, the user is certifying that there is no obstacle to
this test executing at the same time as any other test. Otherwise, by default
tests are assumed to conflict with others in the same directory, because
they might write files there with the same names as those read or written by
other tests. If two tests conflict, they are never run at the same time.
Judicious use of independent = True will increase ATS’s throughput.
We suggest that while a stick(independent=True) may be appropriate,
in some test files, to glue this definition may be reckless.

	priority
	By default the priority of a test is np + the sum of the priorities of
and dependent jobs. The priority option lets you override this by giving
an integer value. A value of zero means the test will be skipped.

	env
	By default the environment passed to the test will be the value of the ATS
environment os.environ. To modify this dictionary, give the option env=D,
with a value D that is a dictionary of the additions or changes to environment
variables that you desire. If None, or not given, the default is used.

	record
	If a test is given option record=False, it is not reported as a separate
test unless it fails in some way.

	timelimit
	Specifying a timelimit denotes maximum execution time for the test.
For example, timelimit=”30m” will kill the test after 30 minutes
and give it TIMEDOUT status.

	SYSTEMS
	SYSTEMS defaults to a list of one value. That value is the value of the
“name” attribute of the machine object ATS has discovered. A filter:

 s in SYSTEMS

where s is this same value, is always used. Thus, by specifying SYSTEMS as
an option, the test will run only on the machines(s) named in SYSTEMS.

	magic
	magic controls the treatment of certain lines of test output.
The default value is #ATS:.

If a test prints any lines beginning with the characters #ATS:,
those lines will appear verbatim in the output, but also will be
printed, less the #ATS: prefix, in the summary messages that
appear when the test finishes.

If magic is set to None or a blank string, the entire parsing of the output
file is skipped.

	hideOutput
	If true, do not print magic output lines in the log.

Extra Arguments On The Executable

If you want to always execute a given application with some fixed arguments in
addition to others that vary, you may give them as part of the executable option
to a test or on the command line. For example:

my_application = "/foo/bar -a -b"
test(clas="-d", executable=my_application)

will result in the execute line /foo/bar -a -b -d.

Be careful about quoting levels. For example, to make a test that did the
equivalent of:

python -c "print '3+4'"

you must use an extra quotation level:

my_application = "python -c"
test(executable=my_application, clas = "\"print '3+4'\"")

Filters

A filter is a string that can be evaluated to a logical result. Filters can
be defined with the command line option -f or –filter, or using the
function filter. Helper functions can be defined using
filterdefs.

Each test declares options: these are keyword = value pairs. To
decide whether or not to execute a test, each filter is evaluated
using Python’s eval function, in an environment consisting of these
symbols:

	The options set by the test (including current ‘stuck’, ‘tacked’, and
‘glued’ option values described below)

	Symbols created parsing of text added by calls to filterdefs.

	The ats environment, consisting of these
objects, which are each described in this document:

manager, test, testif, source, log, filter, filterdefs, stick, unstick,
tack, untack, glue, unglue,
getGlue, getTack, getStick, sys, os, AtsError, AtsTest, abspath,
is_valid_file, is_valid_executable, statuses,
CREATED, RUNNING, INVALID, PASSED, HALTED,
FAILED, BATCHED, SKIPPED, FILTERED,
SYS_TYPE, MACHINE_TYPE, MACHINE_DIR, BATCH_TYPE,
onExit, onSave, getResults.

	SELF is equal to the test object and some of its attributes
may be interesting for filtering (name, label, basename).

If the filter returns true when evaluated, the test will be run.
Otherwise, or if the filter gets a NameError when evaluated, the test
will not be run.

Thus, a test run with:

test('mytest.py', x = 7)

would pass the filter ‘x==7’ but not pass the filter ‘x==5’ nor the filter
‘y==7’ (because the symbol y is not defined by the test).

Additional ATS Vocabulary

ATS input is written in a expanded dialect of Python. That dialect
contains the following facilities.

Debugging and logging

	
debug([value = None])

	debug() can be called in your input; it will return the current debug level:
zero if –debug was not specified, or one if it was.

You can give debug an argument to set a new value, such as debug(2), and
issue conditional code depending on the value which is returned by debug().

	
log(*items[, echo=False, logging = True])

	The log written by ATS, and the terminal (in the form of stderr), can also
be written to from user input. The log function adds a line to the log,
using the enumerated items as if in print statement, unless logging is
False. If echo is True, it prints to standard error.

With no items log prints a blank line.

For example:

log("I want to eat", 5, "donuts")

prints:

I want to eat 5 donuts

	
terminal(*items)

	This is a version of log that writes only to the terminal.

Other methods and attributes in the log object are:

	
log.indent()

	Increase the current indentation.

	
log.dedent()

	Decrease the current indentation.

	
log.reset()

	Reset indentation.

	
logging

	A switch that controls logging to file

	
echo

	A switch that controls logging to stderr.

Shortly after it gets organized, log sets the defaults for logging and echo.
To be SURE you write something to stderr, use echo=True. And if you change
logging or echo, or the indentation level, put things back as you found them,
please.

It is not possible to log a partial line.

Manipulating Test Options

The following facilities provide for setting more-or-less persistent default
values for test options. Each type listed will override the ones above it
while it is still in scope.

	A default value for most options is built in to ATS.

	Command-line options override the default. Command-line options are not
available for every test option, just the most important ones.

	glued: Values set with a glue call. Such values apply until overridden
by another glue call.

	tacked: Values set with a tack call. These values apply until processing
of the current file is finished, including in files sourced by this one.

	stuck: Values set with a stick call. These values apply only in the
file in which the call appears.

	group: Values set with a group call. Such values can be overridden by an
explicit value in the test. Group values last until the next group
or endgroup, or the end of the source file.

	explicit: Options given in a test or testif call always apply to
that test.

Great care should be used with glued and tacked options, because they are not
visible locally in files that are later sourced “from above”, and a person
working on one of these files may not realize they are inheriting a value
already that will take effect unless they override it. This will also cause the file
to behave differently if used stand-alone as opposed to sourced from
another file. Use the least scope that will get the job done for you.

Putting tests in groups has other consequences you should be aware of.
See in particular directory blocking.

Here are the functions for controlling test option defaults:

	
stick(**keys)

	Add the keyword = value pairs to the current dictionary of stuck test
options. Stuck options persist until the end of the current file but do not
apply in files sourced from this one.

A stuck option overrides a tacked or glued option, and is in turn overridden
by an explicit option to test or testif.

	
tack(**keys)

	Add the keyword = value pairs to the current dictionary of tacked test
options. Tacked options persist until end of the current file and do
apply in files sourced from this one.

A tacked option overrides a glued option, and is in turn overridden by a
stuck value or by an explicit option to test or testif.

	
glue(**keys)

	Add the keyword = value pairs to the current dictionary of glued test
options.

Glued options apply to all subsequent test definitions. A glued option can
be overridden by a stuck or tacked option, which in turn can be overridden by
a value given in a test or testif statement.

Think of glued options as permanent changes to the default value
of an option. One use might be to be sure every test has a value for
some option name so that a filter can be constructed.

Notice the language here carefully. In the following example, the value which
will be used in the test for the option color is “blue”:

stick(color = "blue")
glue(color = "red")
test("myscript", clas = "%(color)s")

The stuck option overrides the glued one of the same name.

Items can be removed from these dictionaries with:

	
unstick(*names)

	Remove each name from the list of stuck options. If no list is given, remove
all the stuck options.

	
untack(*names)

	Remove each name from the list of tacked options. If no list is given, remove
all the tacked options.

	
unglue(*names)

	Remove each name from the list of glued options. If no list is given, remove
all the glued options.

Filters are constructed with:

	
filter(*filters)

	Add each string argument as a filter. With no arguments, delete all existing
filters. Note that if you attempt to filter using the name of an option
for which you have not set a default using the facilities above, then
any test in which the option is not specifically set will be not be executed.

Each --filter command-line option is simply a call to this function.

The command-line option –skip allows you to test your filters without
executing any tests.

To assist you in constructing filters we have:

	
getOptions()

	Return a dictionary of the options as they would be seen by a test
defined at the location of this call. Intended to aide debugging of options.

	
filterdefs(text=None)

	Add result of parsing text to the filter environment. Usually used to add
functions to use in filters. If text is None, clear the environment.

Despite the power available here, we recommend you don’t get too cute about it.
The main thing is for it to be clear what is happening.

Customization

The Andyroid Tutorial contains ideas on various sorts of customization.
These include defining your own postprocessor, main program, and
application-specific input language extensions.

Using Levels

To use levels, make a master.ats file with stick commands separating the
tests, such as this example input:

stick(level=10)
test("test1.py")
test("test2.py")

stick(level=20)
test("test3.py")
test("test4.py")
t5 = test("test5.py")

stick(level=30)
test("test6.p7")

this test sets a level explicitly, that overrides the "stick".
testif(t5, "test7.py", level=10)

The currently “stuck” value is set in every test that does not explicitly set
level. Thus test3, for example, has level 20, as if the level=20 were given in
the test statement.

Executing ats on this file with the option –level 30 will execute all these
tests. Executing ats with –level 15 will execute only test1 and test2; test7
depends on test5, which has level 20, so it will not be run even though it has
level 10.

The Test Class

When a test is created by the test or testif command, a test object representing
it is added to manager.testlist. This object is an instance of a class named
AtsTest. Some users may wish to use the following details for debugging
or postprocessors or customization.

The class AtsTest is available to users as ats.AtsTest.

	
AtsTest(*args, **options):

	
	
stuck, glued, tacked

	These are the current dictionaries for determining test options.

	
test_number

	The counter showing the number of tests defined so far.

	
serialNumber

	The unique serial number of this test.

	
name

	Set from an option to the test creation, or as the name of the script,
or the name of the executable, plus the label. Eventually each test’s
name is made unique.

	
label

	Set from an option to the test creation, incorporated in the name
if given.

	
options

	The options for this test, after resolution using defaults, stuck,
tacked, and glued.

	
depends_on

	If not None, the test instance this one depends upon.

	
dependents

	A list of any direct dependents of this test.

	
exited

	Has the job been run and exited?

	
output

	A list of lines of magic output, newlines and magic removed

	
notes

	List of notes from the run; user feel free to append to this list.

..attribute:: level

Test level set from resolved options. Same as options.level.

	
np

	Number of processors required. Same as options.np.

	
batchDic

	A dictionary that may contain various things for a batch job.

	
clas

	A string containing the command line arguments after option interpolation.

	
executable

	An Executable object specifying the executable’s full path.

	
directory

	The full path to the directory in which the test is executed.

	
groupNumber

	The number of the group to which this test belongs, if positive.

	
groupSerialNumber

	The number of the test within its group definition.

	
outname

	The path to the standard output file for the test.

	
errname

	The path to the standard error file for the test.

	
message

	Explains the current value of status.

	
runOrder

	A number indicating the order in which the interactive tests were run.

	
shortoutname

	An abbreviated form of outname used for labeling.

	
timelimit

	An object of class Duration – timelimit.value is the limit in
seconds. Duration objects can be compared to integer numbers of
seconds correctly.

	
waitUntil

	A list of serial numbers of tests this one must wait for.

	
set(status, message)

	Set the object’s status and message.

	
elapsedTime()

	Returns a string, the formatted elapsed time of the run.

	
stick, unstick, glue, unglue, etc.

	Class methods stick, unstick, glue, unglue, etc. are
equivalent to the ones accessible in the vocabulary or ats module.

There are other methods that are not intended for end users.

Test Statuses

There are eleven status values that a test can have. This value is stored in the
test’s attribute status. Collectively this set of a statuses is in the
list ats.statuses and each of them individually is in module ats.

Each status has a four-character abbreviation, shown in parentheses. The status can also be
accessed under this name in the ats module. For example, PASS and PASSED are the same
object. You can correctly compare two statuses using “is” or “is not”, == or !=,
or compare a status to a string representing its name or abbreviation, as in
PASSED == "PASS".

The statuses are:

	INVALID (INVD)
	The test was not properly stated. For example, it referred to a script file
that did not exist. See the log file for the error.

	CREATED (INIT)
	The test was created but not (yet) run.

	PASSED (PASS)
	The test was run and succeeded.

	FAILED (FAIL)
	The test was run and failed.

	EXPECTED (EXPT)
	The test ran and failed in an expected way.

	TIMEDOUT (TIME)
	The test ran longer than its timelimit and was killed.

	SKIPPED (SKIP)
	The test was created successfully but skipped for some reason.
The reason is in the test object’s attribute message.

	FILTERED (FILT)
	The test was created successfully but filtered out for some reason.
The reason is in the test object’s attribute message.

	BATCHED (BACH)
	The test was deemed eligible for batch processing, and has been shipped off
to the batch system. ATS does not know its fate.

	RUNNING (EXEC)
	The test is running, or was running when an error or keyboard interrupt
occurred.

	HALTED (HALT)
	The test was stopped after running successfully for one minute. This status
is only possible if the --cutoff command-line option is used.

Postprocessing

After ATS has finished executing tests, but before it exits, it calls any
Python routines that have been registered with it by calling:

manager.onExit(routine)

The routine should have the signature

def routine (manager):
...

The routine can do anything it wants. In particular, manager.testlist is
available. Here’s an example of a trivial postprocessor in an input file:

def routine(manager):
 passedTests = [test for test in manager.testlist \
 if test.status is manager.PASSED]
 print [test.name for test in passedTests]
manager.onExit(routine)
source ("set1.ats")
source ("set2.ats")

The postprocessing file is designed to make it possible to run postprocessing functions
of this kind using the state variable as the manager argument, rather than
doing it as an onExit routine.

Test Suite Strategies

One of the problems with excessive choice is the paralzying effect of choice.
There are a lot ways to do things with ATS. So here we describe a
basic strategy to use until you have enough experience to form your own opinion.

We strongly urge that you read the Andyroid Tutorial as well.

This scheme assumes your code sources are destributed over a set of directories
with a common parent called Home, with a subdirectory Test.

In each subdirectory with code that has a separate test (such as a unit test,
or a test that emphasizes that coding) put a file with extension “ats”. This
file contains a series of source statements that get further input or are test
inputs containing introspective test statements).

	::
	test(clas = “-in myinput”, np = 1)
source(“mysubdir/moretests.ats”)

Separate these inputs into levels with stick-level statements such as:

stick(level = 10)
...some tests...
stick(level=20)
...longer-running tests...
stick(level=30)
...still more...

You choose how many different levels you like. We recommend choosing well-spaced
numbers in case you later change your mind and want to insert levels between the
ones you start out with. Note that any test can still specify a level on its own
that would override the stuck level.

As you go up your directory tree toward Home, put files that source the ones
below it, until finally you have a tree leading to a file, say “testsuite.ats”,
residing in your Home/Test directory.

Then you can make a series of small drivers. For example, your shortest test
suite my be driven by this file:

glue("level <= 10")
source("testsuite.ats")

Running ats with this file as its input will result in only tests with level 10
or less being executed.

When the team that maintains a certain area wants to add a test, they add it
to the closest member of the test-file tree relative to the source code they
work with. They put it in the file at the appropriate level. This scheme leads
to only rare source-code control conflicts, and ones that are usually a trivial
merge; this avoids the conflicts generated by having a central test file.

Teams should be encourage to use introspection so that other members, less
informed about how to test a certain area, can nevertheless exercise a good
suite of tests using ATS, while allowing the experts to still use the input file
directly with the code.

If there is one principle program being tested, it makes sense to use the
-e option for it, and only explicitly specify an executable when it is
different.

	::
	mycode = ‘/full/path/to/my/code’
test(executable=mycode, script=’foo.py’)

The extended example in Examples/Andyroid gives you many more ideas about how
to use ATS.

Porting and Custom Machines

ATS decides on which machine characteristics to use by examining the value of
the environment variable MACHINE_TYPE; or, if it is not defined, the value
of the environment variable SYS_TYPE; or as default the value of Python’s
sys.platform variable.

The reason for this three-level structure is to allow you to distinguish
machine architectures when you have machines of the same basic type but with
varied environments such as current OS level, parallel processing directives,
or attached hardware. For an ordinary user on a personal computer, there is no
reason to do anything special.

Most of the interaction between ATS and the platform takes place in
a machine module, defined by default in the sources in file Lib/machines.py.
Different behaviors are obtained by inheriting from this module, or one
derived from it, and overriding various methods. We then connect our new
machine module to a value for MACHINE_TYPE with a comment in our module file,
and install that module in a directory in the Python distribution.

Porting ATS to a new platform is just one of the things you can do
with the technique we describe in this section; you can also do things like
doing something special when a job finishes, inventing your own scheduling
algorithm, etc. You’ll need a decent knowledge of Python to do it, but
you don’t need to be an expert.

If you invent a new value for MACHINE_TYPE, you can change the way ATS launches
and finishes jobs and keeps track of resources, amongst other things. You can
add command-line options and react to the user’s use of them. Your options will
even appear when the user executes with --help.

To do this, you write a new Python source file, usually having a module name
equal to your value for MACHINE_TYPE. This file must define a new child of
machines.Machine, and you must have a comment:

#ATS:name module class npMax

This line or lines defines the relationship between a MACHINE_TYPE and this
module’s machine class and provides the maximum number of jobs you wish to
execute at once (or it may mean the maximum number of processors one job can
use in a parallel programming environment):

	name is the name to match with MACHINE_TYPE.

	module is the name of the module file, or SELF.

	class is the name of the class in that module to use as a Machine.

	npMax is a limit on np; if this number is negative it is a suggested
default only.

	machine.scheduler is created by the standard __init__ method of
the machine. If you want to create your own scheduler you can replace this
attribute. See Customizing the Scheduler below.

The file Lib/machines.py is well documented and it is usually not a large
problem to get things working.

Once you have your module file ready, you write a setup.py file to go with it:

from distutils.core import setup
myMachines =[myMachine.py] # list your machine module files
setup(name="myAtsAddon",
 author = "you",
 version = "1.0",
 description = "All About My Machine",
 data_files = [('atsMachines', myMachines)],
 scripts = ['mycustomdriver'], #if you have one
)

and then execute python setup.py install. Set the environment variable
MACHINE_TYPE and run ATS. It will report the machine module it has discovered.

In this setup.py file, the unchangeable word is atsMachines. This
is the name of a directory below your Python installation root where the
machine files are found by ATS. The scripts line can be omitted if you
do not want to install your own driver.

Adding Test Options Via Machine

In a customized machine, the examineOptions routine can add entries to
a dictionary, options.testDefaults. These will be default option values for each
test. For example, here is how you would add an option nt that could
be specified on the command line in the machine file:

def addOptions(parser):
 parser.add_option('--nt', dest='nt', default=1, type='int',
 help='Set default number of threads per test.')

def examineOptions(options):
 options.testDefaults['nt'] = options['nt']

Of course, the machine would also have to examine and use properly the value of
each test’s option nt; but it would always have one, and hence it could be
used in filters.

Customizing the Scheduler

The scheduler class StandardScheduler is defined in module schedulers. It
handles issues such as priorities, and enforcing rules for the group()
and wait() commands, and the independent option.

Customizing the scheduler is possible but difficult. It should in particular
supply a method testlist() that returns the list of tests that are not yet
completed. Inheritance is strongly suggested, so that you only change what
you need to change. You’ll probably want to change the machine too so that
it creates the correct scheduler, but it feasible to create and assign a new
machine attribute scheduler at any point up to and including the call to
machine.load.

The important thing is to maintain correct separation between the scheduler
and the machine objects. The scheduler must ask the machine for such things
as canRunNow that are within the purview of the machine, and ask it
about whether jobs have finished. The machine contains an attribute running,
a list of the jobs currently running. The periodicReport in the
scheduler does the basic report once a minute; a machine can call this and
then add more.

The ats Module

The ats module can be imported in custom drivers and postprocessors.
Resources available in it are all imported from internal modules.
These are documented further in the Appendix.

	
log, terminal

	See the discussion of the log. terminal is simply a version of log
that only writes to the terminal, not the log.

	
times

	Is a module containing useful time-handling routines

	
configuration

	Is the module that has information about the machine and command-line
options.

	
manager

	Is the manager object. It has in particular testlist, and the
routines discussed above. It is defined in the management module.

	
testEnvironment

	Is the vocabulary dictionary.

	
AtsTest

	Is the test class.

	
debug(value=None)

	Is the debug function

	
exception AtsError

	Is the class of exceptions thrown by ATS.

	
statuses, CREATED, INVALID, PASSED, FAILED, HALTED, SKIPPED,

	
BATCHED, RUNNING, FILTERED, TIMEDOUT, SYS_TYPE, MACHINE_TYPE

	Discussed previously, these are available via the ats module as attributes.

Using A Batch Facility

General Information

When running ATS, if a batch facility exists, both the interactive jobs and
batch jobs will run. You have to use the facilities of that batch facility
to find out what happened to those tests, because ATS will likely finish and
exit long before those jobs are done.

Unfortunately, the world doesn’t have a standard batch facility. So here is
an example of using the MSUB batch system at the Livermore Computing Center.
Much of what follows would apply to any batch system.

To add a different batch system one must customize a batch machine to be
installed in your ATS. For advice on how to do this, please contact us.

The basics are simple: if a test has a batch = 1 option, it is a batch test.
Each of the batch tests are individually submitted to the batch system.
The --allInteractive flag is available to execute such tests without using
the batch system. Otherwise, they are simply skipped if no batch system is
found.

For the LC system in particular,

	A testName.bat file is craated for the test.

	The test information is written to a “batchContinue.log”. This file will be
a concatenation of all the batch tests and will provide information about
the tests.

Running Entirely In Batch

Submitting a lot of single batch jobs may overwhelm some batch systems.
In that case it may be preferable to submit just one big batch job.
One batch job is created to run all the tests (both batch and interactive).

The ATS option --allInteractive is neccesary in the ATS command to prevent
the tests from being submitted seperately as batch.

An example of a batch script using MSUB at LC:

#!/bin/csh

#MSUB -N tmpAts0.157456004499.job
#MSUB -j oe
#MSUB -o tmpAts0.157456004499.job.out
#MSUB -q pbatch
#MSUB -l nodes=4:ppn=16
#MSUB -l ttc=64
#MSUB -l walltime=200
#MSUB -V # exports all environment var
#MSUB -A myBank # bank to use

setenv SYS_TYPE chaos_4_x86_64_ib

date
cd /my/work/directory/; atsb --allInteractive --numNodes=4 -useSrunStep Test/full.ats
date

The command-line options --numNodes=4 --useSrunStep are not a part of
standard ATS. In this case, the ATS machine type chaos_4_x86_64_ib has been
defined in a custom machine file, and custom machine files can add command-line options.

More Examples

Introspection

mytestA.py:
 #ATS:test(SELF, batch=1, np=2, ...)
 ...mytestA problem...

mytestB.py:
 #ATS:stick(batch=1)
 #ATS:test(SELF, ...)
 ...mytestB problem...

myAts.ats:
 tack(batch=1)
 source('mytestC.py')
 source('mytestD.py')
 source('mytestE.py')

In myytestA.py, a 2-processor batch job is created by introspection.

In mytestB.py, the test created through introspection will be run in batch,
unless it happened to explicitly contain the option batch = 0, because the
stick call makes batch = 1 the default in this file.

Running myAts.ats, the tack makes batch = 1 apply also in the three
files that get read. If this were a stick, it wouldn’t apply inside those
other files.

Test Control

Suppose the file mytest.py contains a test script. The script
throws an exception if it gets an error. It has a command line
argument delta. Suppose mytest.py reads:

#ATS:log('mytest.py tests sanity of my group leader.')
#ATS:test(SELF, 'delta=0.5')
#ATS:test(SELF, 'delta=0.6', sanitycheck = 1)
#ATS:test(SELF, 'delta=0.7', np=4, sanitycheck = 1)
import physics
...command line processing to get delta's value...
...test problem....
...throws an exception if it fails...

If we run:

ats --exec myapplication mytest.py

then it is equivalent to running 3 tests:

myapplication mytest.py delta=0.5
myapplication mytest.py delta=0.6
myapplication mytest.py delta=0.7

The last one is run on 4 processors if the machine supports it.

Consider the command line:

ats --exec myapplication -f 'sanitycheck == 0' mytest.py

None of the tests are run; the first because sanitycheck is not one
of its options, the other two because it is but the value is not
zero. We could make sanitycheck have a default value of zero for all tests
in mytest.py by adding this line to the top of mytest.py:

#ATS:stick(sanitycheck=0)

With this line added we would run only the first test.

Using the filter sanitycheck==1 would run the last two tests but
skip the first. Using the filter ‘not np’ would run only the first
two jobs, since they have by default np == 0.

Suppose mytest.ats reads:

source('mytestA.py')
source('mytestB.py')

and mytestA.py reads:

#ATS:stick(batch=1)
#ATS:test(SELF,delta=0.1)
...mytestA problem....

and mytestB.py reads:

#ATS:test(SELF)
...mytestB problem....

If we run:

ats -e myapplication --nobatch mytest.ats

then only myTestB.py is executed, and execution of mytestA.py is skipped,
since ats is not set for batch tests to run. Note --exec can be abbreviated
as -e.

If we run:

ats -e myapplication mytest.ats

then mytestA.py is submitted to batch and mytestB.py is run interactively.
If there is no batch system, mytestA.py is skipped.

In practice a batch facility, if present, would add further options for
controlling itself, such as options to set accounts or priorities or timelimits.
The maintainers of such batch facilities will provide the documentation for
them.

Finally,

ats --allInteractive -e myapplication mytest.ats

will test both myTestA and myTestB.

Resources For Learning ATS

The Examples directory in the distribution contains the sources that
accompany the Andyroid Tutorial, including some sample customizations.

The Test directory contains more examples, although care
must be taken in reading them as some of these are designed to fail.

At your particular location you may find other directories that define
machines and batch systems for your local computer center.

Quick Recipes

	To run only the batch tests:

ats --filter 'batch == 1' mytest.ats

	To run only the interactive tests:

ats --nobatch mytest.ats

	To run all tests as interactive tests:

ats --allInteractive mytest.ats

	To check your input add –skip; add –debug for even more information.

	To keep the output files even if the test succeeds, add –keep

Notes

This chapter contains documentation useful for maintainence, customization,
and debugging.

Modules

The ats module contains several submodules documented below. The ats program
imports the ats module and calls the manager’s main routine.
As documented in Custom Drivers,
a user may create their own driver and even break main down into pieces in
that driver.

ats

configuration

The configuration module makes the basic discoveries about the machines,
creates the log, requests command-line options from the machines, and
processes the options with call-backs to interested parties to examine them.

management

The management module is the main supervisor of the program, and is instantiated
as a singleton object, manager.

tests

This module defines test objects and groups. However, these are not created
directly but rather via functions in the manager, test, testif,
group, endgroup.

schedulers

The scheduler attribute of the machine is an instance of the StandardScheduler class.

machines

(See also Porting.)

This module contains base definitions for interactive and batch facilities.
To adapt to a new platform, inherit from machine and override appropriate
methods.

log

The log is an instance of AtsLog. The log object is callable
(See the AtsLog.__call__ method). A call is equivalent to the method write.
The log call can write to a file, the terminal, or both.

An instance of AtsLog named terminal is also available. This writes
only to the standard out, not to any file.

times

This module contains utility functions and a class that deal with times.

atsut

This module contains utilities and definitions (such as the statuses) used
widely in ATS. The basic error type AtsError is also defined here.
Many of these definitions are imported into the ats module proper.
The class AttributeDict is used in several places. It is a dictionary
that also accepts attribute-style reading and writing.

executables

This small module is used to represent executables.

Programming Notes

Note that because of the complex interactions between priorities, dependents,
filters, and waits, the AtsTest and AtsTestGroup classes cannot be
directly instantiated by a user. The purpose of making those classes visible
at the ats module level is to allow subclassing.

Forming Groups

Each test has a group attribute. These are instances of AtsTestGroup.
Under normal circumstances each test gets a new group instance with a distinct
group number, and that test is the only method of that group. Doing this avoids
a considerable amount of logic compared to only having groups for tests
created in the scope of a group() command.

When a group() call occurs, the newGroup class method of the AtsTest
class is called. This halts the incrementing of the group number and
subsequent tests that are created share the group instance until either
endgroup() is called and calls the class method endGroup, or we reach
the end of the source file, which triggers a call to endGroup.

Note that a group call can specify keyword / value pairs which bind more
tightly than anything except an explicit pair in a test statement.
This allows the user for example to specify a base label, with the other
members of the group getting the same name with a #n numbering by default.

The group objects inherit from list and are basically a list of test objects
with routines added to treat the list as a collection.

Implementing Waits

Three AtsTest class methods combine to implement wait(): waitNewSource,
called when a new file is begun; waitEndSource, called at the end of a
sourced file; and wait itself, called by the user.

The result is that each test object ends up with an attribute waitUntil
which is a list of the tests this object must wait for. Note that this
attibute (on the test object, not the one on the class) must never be
modified because it may be shared with another test. You will note in the
coding several instances of such lists being copied with a colon selector, in
order to avoid unwanted sharing.

Since many of these lists are long stretches of consecutive integers, it would
be possible to save space by making them instances of a special class that
acts like a list. We have not yet done this and will until users decide they
are happy with the semantics we have currently implemented.

Dependents

Each test has a list of all of its direct and indirect dependents. These lists
are created via the method addDependent of AtsTest called by the
testif function.

This method enforces several important policies, such as disabling tests that
are children of tests that will never run or which are expected to give a
failing result, or which are to be batched.

The need to enforce these policies drives the decision to do canRun early.
This means that by the time a dependent is created, the status of its parent(s) has been fixed as to filtered, skipped, or batched. Note particularly the case
where an otherwise interactive test gets switched to batch because it cannot
run on this interactive machine.

The Standard Machine

As tests are created, the canRun method of the interactive machine is called
to determine if a test can run when the machine is empty. Assuming a test
makes it into the final interactive test list, all of which are in status
CREATED, we need to decide the order in which the tests are to be run.

This order is dynamic, as it depends on processor availablity. Other factors
are the results of wait and group commands.

There are four conditions that must be met to run a test:

	The test has status CREATED.

	Enough processors are available.

	The directory where the test is to be executed is not “blocked”. The test
would not be affected if its option independent is True. Otherwise there
must not be a non-independent test or group currently reserving that
directory (that is, another test is running there or a group was started
there that isn’t finished yet).

	Any parent tests are finished and have passed, and any tests this one must
wait for because of wait() calls are no longer waiting to run.

As tests complete, any failure may put descendents into SKIP status.

During the load of the interactive test list, the totalPriority of
a test is calculated using the test’s list of children and tests that must
wait for it. The sum of the priorities of such subordinate tests becomes the
totalPriority of the test. The test list is then sorted on
totalPriority.

To choose the next test to start, then, we take the first test in the list
that satisfies the four conditions. (The routine canRunNow tests this.)

As tests complete, we must eventually find a new test to run if there is one
whose status is still CREATED, because when no test is running any more,
no directory is blocked and the tests have all been certified runnable on an
empty machine by canRun.

When we can’t find such a test, we’ re done!

Index

 Symbols
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

Symbols

 	
 	
 --debug

 	command line options

 	--keep

 	
 --level

 	stick, level

 	--verbose

 	
 :pair:installation

 	setup.py

 	
 	
 ``#ATS:``

 	input

 	input introspection

 	output

 	
 ``atsr.py``

 	saveFileName

 	~ operator

A

 	
 	
 adding test options

 	customized machines

 	Andyroid

 	
 ATS

 	command-line options

 	execution

 	
 	ATS features

 	AtsError

 	AtsTest

B

 	
 	batch

 	test option, [1]

 	BATCH_TYPE

 	batchDic

 	
 BATCHED

 	status

 	
 built-in function

 	debug(), [1]

 	define()

 	endgroup()

 	filter()

 	filterdefs()

 	getOptions()

 	getResults()

 	glue()

 	group()

 	log()

 	log.dedent()

 	log.indent()

 	log.reset()

 	onCollected()

 	onExit()

 	onPrioritized()

 	onSave()

 	printResults()

 	saveResults()

 	showDefine()

 	source()

 	stick()

 	tack()

 	terminal()

 	test()

 	testif()

 	undefine()

 	unglue()

 	unstick()

 	untack()

 	wait()

C

 	
 	capturing all output

 	
 changing comment convention

 	introspection

 	
 check

 	test option

 	clas, [1]

 	interpolation

 	test option

 	test statement

 	
 command line

 	custom

 	
 command line options

 	--debug

 	
 command-line options

 	ATS

 	list

 	using --help

 	
 	configuration

 	control-C

 	
 CREATED

 	status

 	
 custom

 	command line

 	driver

 	
 customization

 	onCollected input

 	onPrioritized input

 	customized machines

 	adding test options

 	
 customizing

 	StandardScheduler

D

 	
 	
 debug()

 	built-in function, [1]

 	define

 	vocabulary

 	
 define()

 	built-in function

 	
 defining

 	functions

 	dependents

 	depends_on

 	
 	directory

 	log

 	test option

 	
 directory blocking

 	groups, independent

 	
 disposition of

 	output files

 	
 driver

 	custom

 	handyAndy

E

 	
 	echo

 	elapsedTime()

 	
 empty string

 	magic

 	
 endgroup()

 	built-in function

 	
 env

 	test option

 	errname

 	
 example

 	group

 	executable, [1]

 	test option

 	
 	
 execution

 	ATS

 	
 exécutable

 	test option

 	exited

 	
 EXPECTED

 	status

 	
 expected

 	failure

 	status

 	expecting failure

F

 	
 	
 FAILED

 	status

 	
 failure

 	expected

 	
 file ``atsr.py``

 	postprocessing

 	
 file sourced only once

 	input

 	
 filter()

 	built-in function

 	
 	
 filterdefs()

 	built-in function

 	
 FILTERED

 	status

 	filters, [1]

 	function signatures

 	
 functions

 	defining

 	wrappers

G

 	
 	
 get

 	vocabulary

 	
 getOptions()

 	built-in function

 	
 getResults()

 	built-in function

 	
 glue

 	test options

 	
 glue()

 	built-in function

 	
 glued

 	options

 	
 	
 group

 	example

 	options, [1]

 	
 group()

 	built-in function

 	groupNumber

 	test attribute

 	
 groups

 	independent directory blocking

 	groupSerialNumber

H

 	
 	
 HALTED

 	status

 	
 handyAndy

 	driver

 	
 	
 hideOutput

 	test option, [1]

I

 	
 	
 in test or testif statement

 	options

 	
 independent

 	directory blocking groups

 	option

 	test option, [1], [2]

 	independent (test option)

 	
 influences on

 	scheduling

 	
 input

 	``#ATS:``

 	customization, onCollected

 	customization, onPrioritized

 	file sourced only once

 	introspection, ``#ATS:``

 	magic

 	
 	input file names

 	
 interactive

 	postprocessing

 	
 interpolation

 	clas

 	options

 	script

 	interrupts

 	introspection, [1]

 	``#ATS:`` input

 	changing comment convention

 	
 INVALID

 	status

K

 	
 	
 keep

 	test option, [1], [2]

 	
 	killing jobs

L

 	
 	label

 	test option, [1]

 	
 level

 	--level stick

 	option

 	test option

 	levels

 	
 list

 	command-line options

 	LLNL-specific features

 	log

 	directory

 	
 	log output

 	
 log()

 	built-in function

 	
 log.dedent()

 	built-in function

 	
 log.indent()

 	built-in function

 	
 log.reset()

 	built-in function

 	logging

M

 	
 	MACHINE_TYPE

 	
 magic

 	empty string

 	input

 	output, [1]

 	test option, [1]

 	
 	manager

 	
 manipulating

 	test options

 	message

N

 	
 	name

 	test option

 	notes

 	test

 	
 	np

 	test option, [1]

O

 	
 	
 onCollected

 	input customization

 	
 onCollected()

 	built-in function

 	
 onExit()

 	built-in function

 	
 onPrioritized

 	input customization

 	
 onPrioritized()

 	built-in function

 	
 onSave()

 	built-in function

 	
 option

 	independent

 	level

 	report

 	stick

 	options

 	glued

 	group, [1]

 	in test or testif statement

 	interpolation

 	stuck

 	tacked

 	test, [1]

 	user-defined

 	using filters with

 	
 	
 organization

 	test suite

 	outname

 	output

 	``#ATS:``

 	magic, [1]

 	output files

 	disposition of

 	tests

P

 	
 	
 PASSED

 	status

 	porting to new machine types

 	post-processing file

 	postprocessing

 	file ``atsr.py``

 	interactive

 	
 	preventing conflicts, [1]

 	
 printing

 	vocabulary

 	
 printResults()

 	built-in function

 	
 priority

 	scheduling

 	test option, [1], [2], [3], [4]

R

 	
 	
 record

 	test option, [1]

 	
 report

 	option

 	
 	
 RUNNING

 	status, [1]

 	runOrder

 	test attribute

S

 	
 	
 saveFileName

 	``atsr.py``

 	
 saveResults()

 	built-in function

 	
 scheduler

 	scheduling

 	standard

 	
 scheduling

 	influences on

 	priority

 	scheduler

 	totalPriority

 	
 script

 	interpolation

 	test option

 	test statement

 	SELF

 	serialNumber

 	set()

 	shortoutname

 	
 showDefine()

 	built-in function

 	
 SKIPPED

 	status

 	
 source()

 	built-in function

 	
 standard

 	scheduler

 	
 StandardScheduler

 	customizing

 	
 	
 statement

 	wait

 	
 status

 	BATCHED

 	CREATED

 	expected

 	EXPECTED

 	FAILED

 	FILTERED

 	HALTED

 	INVALID

 	PASSED

 	RUNNING, [1]

 	SKIPPED

 	TIMEDOUT

 	
 stick

 	level --level

 	option

 	test options

 	
 stick()

 	built-in function

 	
 structuring

 	test suite, [1]

 	
 stuck

 	options

 	SYS_TYPE

 	
 SYSTEMS

 	test option, [1]

T

 	
 	
 tack()

 	built-in function

 	
 tacked

 	options

 	terminal output

 	
 terminal()

 	built-in function

 	
 test

 	notes

 	options, [1]

 	
 test attribute

 	groupNumber

 	runOrder

 	totalPriority, [1]

 	
 test command-line

 	test option

 	test creation

 	
 test option

 	batch, [1]

 	check

 	clas

 	directory

 	env

 	executable

 	exécutable

 	hideOutput, [1]

 	independent, [1], [2]

 	keep, [1], [2]

 	label, [1]

 	level

 	magic, [1]

 	name

 	np, [1]

 	priority, [1], [2], [3], [4]

 	record, [1]

 	script

 	SYSTEMS, [1]

 	test command-line

 	timelimit, [1]

 	
 	test option overview

 	test options

 	glue

 	manipulating

 	stick

 	user-defined

 	
 test statement

 	clas

 	script

 	test statuses, [1]

 	
 test suite

 	organization

 	structuring, [1]

 	
 test()

 	built-in function

 	test_number (built-in variable)

 	testEnvironment

 	
 testif()

 	built-in function

 	
 tests

 	output files

 	tests with postprocessors

 	
 TIMEDOUT

 	status

 	timelimit

 	test option, [1]

 	times

 	
 totalPriority

 	scheduling

 	test attribute, [1]

 	
 triple

 	ats.log;atss.log;logs

U

 	
 	
 undefine

 	vocabulary

 	
 undefine()

 	built-in function

 	
 unglue()

 	built-in function

 	
 unstick()

 	built-in function

 	
 	
 untack()

 	built-in function

 	
 user-defined

 	options

 	test options

 	
 using --help

 	command-line options

 	
 using filters with

 	options

V

 	
 	vocabulary

 	define

 	get

 	printing

 	undefine

W

 	
 	
 wait

 	statement

 	
 wait()

 	built-in function

 	
 	waitUntil

 	
 wrappers

 	functions

 nav.xhtml

 Table of Contents

 		
 <no title>

 		
 The Automated Test System

 		
 Purpose and Features

 		
 Download and Install

 		
 History

 		
 LLNL Notes

 		
 About The Documentation

 		
 The ATS Tutorial, Andyroid

 		
 Introduction To Andyroid

 		
 Running Andyroid under ATS

 		
 ATS Execution Phases

 		
 Phase 1: Sourcing

 		
 Phase 2: Sorting

 		
 Phase 3: Batch

 		
 Phase 4: Execution

 		
 Phase 5: Report

 		
 Phase 6: Postprocessing

 		
 Debugging Techniques

 		
 Debugging Scheduling

 		
 Structuring Your Test Suite

 		
 Simple First Steps

 		
 Understanding The Test Statement

 		
 User-Defined Options

 		
 Understanding Defines

 		
 Defining functions

 		
 Leveling

 		
 Advanced Topics

 		
 Expecting Failure

 		
 Postprocessing

 		
 Using the Log

 		
 Using Magic Output

 		
 Making Custom Drivers

 		
 Reference Material

 		
 Test Selection and Execution

 		
 ATS Execution and Command-line Options

 		
 Basic Operations

 		
 Controlling Input

 		
 File Sourcing

 		
 Using Introspection

 		
 Grouping

 		
 Wait

 		
 Executing Tests

 		
 Scheduling

 		
 Progress Reports

 		
 Output Files

 		
 Interrupting a Run

 		
 Creating and Selecting Tests

 		
 Creating Tests

 		
 Test Options

 		
 Filters

 		
 Additional ATS Vocabulary

 		
 Manipulating Test Options

 		
 Customization

 		
 Using Levels

 		
 The Test Class

 		
 Postprocessing

 		
 Test Suite Strategies

 		
 Porting and Custom Machines

 		
 Adding Test Options Via Machine

 		
 Customizing the Scheduler

 		
 The ats Module

 		
 Using A Batch Facility

 		
 General Information

 		
 Running Entirely In Batch

 		
 More Examples

 		
 Introspection

 		
 Test Control

 		
 Resources For Learning ATS

 		
 Quick Recipes

 		
 Notes

 		
 Modules

 		
 ats

 		
 configuration

 		
 management

 		
 tests

 		
 schedulers

 		
 machines

 		
 log

 		
 times

 		
 atsut

 		
 executables

 		
 Programming Notes

 		
 Forming Groups

 		
 Implementing Waits

 		
 Dependents

 		
 The Standard Machine

_static/plus.png

_static/file.png

_static/minus.png

